Liquid-phase monolayer doping of InGaAs with Si-, S-, and Sn-containing organic molecular layers

dc.contributor.authorO'Connell, John
dc.contributor.authorNapolitani, Enrico
dc.contributor.authorImpellizzeri, Giuliana
dc.contributor.authorGlynn, Colm
dc.contributor.authorMcGlacken, Gerard P.
dc.contributor.authorO'Dwyer, Colm
dc.contributor.authorDuffy, Ray
dc.contributor.authorHolmes, Justin D.
dc.contributor.funderScience Foundation Irelanden
dc.date.accessioned2017-05-03T11:11:47Z
dc.date.available2017-05-03T11:11:47Z
dc.date.issued2017-05-01
dc.date.updated2017-05-02T09:11:21Z
dc.description.abstractThe functionalization and subsequent monolayer doping of InGaAs substrates using a tin-containing molecule and a compound containing both silicon and sulfur was investigated. Epitaxial InGaAs layers were grown on semi-insulating InP wafers and functionalized with both sulfur and silicon using mercaptopropyltriethoxysilane and with tin using allyltributylstannane. The functionalized surfaces were characterized using X-ray photoelectron spectroscopy (XPS). The surfaces were capped and subjected to rapid thermal annealing to cause in-diffusion of dopant atoms. Dopant diffusion was monitored using secondary ion mass spectrometry. Raman scattering was utilized to nondestructively determine the presence of dopant atoms, prior to destructive analysis, by comparison to a blank undoped sample. Additionally, due to the As-dominant surface chemistry, the resistance of the functionalized surfaces to oxidation in ambient conditions over periods of 24 h and 1 week was elucidated using XPS by monitoring the As 3d core level for the presence of oxide components.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationO’Connell, J., Napolitani, E., Impellizzeri, G., Glynn, C., McGlacken, G. P., O’Dwyer, C., Duffy, R. and Holmes, J. D. (2017) 'Liquid-Phase Monolayer Doping of InGaAs with Si-, S-, and Sn-Containing Organic Molecular Layers', ACS Omega, 2(5), pp. 1750-1759. doi: 10.1021/acsomega.7b00204en
dc.identifier.doi10.1021/acsomega.7b00204
dc.identifier.endpage1759en
dc.identifier.issn2470-1343
dc.identifier.issued5en
dc.identifier.journaltitleACS Omegaen
dc.identifier.startpage1750en
dc.identifier.urihttps://hdl.handle.net/10468/3910
dc.identifier.volume2en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/
dc.rights© 2017 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen
dc.subjectHeat treatmenten
dc.subjectMass transferen
dc.subjectSpectraen
dc.subjectThin filmsen
dc.titleLiquid-phase monolayer doping of InGaAs with Si-, S-, and Sn-containing organic molecular layersen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ACSO_17-2-1750.pdf
Size:
1.83 MB
Format:
Adobe Portable Document Format
Description:
Published Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: