EEG datasets for healthcare: A scoping review
dc.contributor.author | Peres da Silva, Caroline | en |
dc.contributor.author | Tedesco, Salvatore | en |
dc.contributor.author | O’Flynn, Brendan | en |
dc.contributor.funder | Science Foundation Ireland | en |
dc.contributor.funder | European Regional Development Fund | en |
dc.date.accessioned | 2024-03-27T15:44:43Z | |
dc.date.available | 2024-03-27T15:44:43Z | |
dc.date.issued | 2024-03-11 | en |
dc.description.abstract | The rapidly evolving landscape of artificial intelligence (AI) and machine learning has placed data at the forefront of healthcare innovation. Electroencephalography (EEG) has gained significant attention for its potential to revolutionize healthcare applications. However, the effective utilization of EEG data in advancing medical diagnoses and treatment hinges on the availability and quality of relevant datasets. In this context, we conducted a scoping review to explore the wealth of EEG datasets designed for healthcare applications. This review serves as a critical exploration of the current landscape, aiming to identify datasets related to healthcare conditions while assessing their reusability. Our findings highlight both the opportunities and limitations in the wealth of open access EEG datasets. Available. As AI increasingly relies on high-quality, well labelled data, barriers impeding the sharing and utilization of EEG data for healthcare (such as lack of comprehensive documentation or adherence to FAIR principles) must be addressed so as to leverage the potential of advanced deep learning models to unlock new possibilities for diagnosis and analysis of a wide array of medical conditions. | en |
dc.description.sponsorship | Science Foundation Ireland (12/RC/2289-P2) | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Published Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Peres da Silva, C., Tedesco, S. and O’Flynn, B. (2024) 'EEG datasets for healthcare: A scoping review', IEEE Access, 12, pp. 39186-39203. https://doi.org/10.1109/ACCESS.2024.3376254 | en |
dc.identifier.doi | https://doi.org/10.1109/ACCESS.2024.3376254 | en |
dc.identifier.eissn | 2169-3536 | en |
dc.identifier.endpage | 39203 | en |
dc.identifier.journaltitle | IEEE Access | en |
dc.identifier.startpage | 39186 | en |
dc.identifier.uri | https://hdl.handle.net/10468/15714 | |
dc.identifier.volume | 12 | en |
dc.language.iso | en | en |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres Programme::Phase 1/16/RC/3918/IE/Confirm Centre for Smart Manufacturing/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Centres for Research Training Programme::Data and ICT Skills for the Future/18/CRT/6223/IE/SFI Centre for Research Training in Artificial Intelligence/ | en |
dc.relation.project | info:eu-repo/grantAgreement/SFI/SFI Research Centres/13/RC/2077/IE/CONNECT: The Centre for Future Networks & Communications/ | en |
dc.rights | © 2024, the Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0 | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Electroencephalography | en |
dc.subject | EEG | en |
dc.subject | Deep learning | en |
dc.subject | Open acc | en |
dc.subject | Data sets | en |
dc.title | EEG datasets for healthcare: A scoping review | en |
dc.type | Article (peer-reviewed) | en |
oaire.citation.volume | 12 | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- EEG_Datasets_for_Healthcare_A_Scoping_Review.pdf
- Size:
- 2.05 MB
- Format:
- Adobe Portable Document Format
- Description:
- Published Version
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 2.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: