Surface modification of perfect and hydroxylated TiO2 rutile (110) and anatase (101) with chromium oxide nanoclusters

dc.contributor.authorFronzi, Marco
dc.contributor.authorNolan, Michael
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Commissionen
dc.contributor.funderEuropean Cooperation in Science and Technologyen
dc.contributor.funderHigher Education Authorityen
dc.date.accessioned2017-11-02T10:23:28Z
dc.date.available2017-11-02T10:23:28Z
dc.date.issued2017-10-17
dc.date.updated2017-11-02T10:15:08Z
dc.description.abstractWe use first-principles density functional theory calculations to analyze the effect of chromia nanocluster modification on TiO2 rutile (110) and anatase (101) surfaces, in which both dry/perfect and wet/hydroxylated TiO2 surfaces are considered. We show that the adsorption of chromia nanoclusters on both surfaces is favorable and results in a reduction of the energy gap due to a valence band upshift. A simple model of the photoexcited state confirms this red shift and shows that photoexcited electrons and holes will localize on the chromia nanocluster. The oxidation states of the cations show that Ti3+, Cr4+, and Cr2+ (with no Cr6+) can be present. To probe potential reactivity, the energy of oxygen vacancy formation is shown to be significantly reduced compared to that of pure TiO2 and chromia. Finally, we show that inclusion of water on the TiO2 surface, to begin inclusion of environment effects, has no notable effect on the energy gap or oxygen vacancy formation. These results help us to understand earlier experimental work on chromia-modified anatase TiO2 and demonstrate that chromia-modified TiO2 presents an interesting composite system for photocatalysis.en
dc.description.sponsorshipEuropean Cooperation in Science and Technology (COST Action CM1104 “Reducible Metal Oxides, Structure and Function”);Science Foundation Ireland and Higher Education Authority (funded Irish Centre for High End Computing)en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFronzi, M. and Nolan, M. (2017) 'Surface Modification of Perfect and Hydroxylated TiO2 Rutile (110) and Anatase (101) with Chromium Oxide Nanoclusters', ACS Omega, 2(10), pp. 6795-6808. doi: 10.1021/acsomega.7b01118en
dc.identifier.doi10.1021/acsomega.7b01118
dc.identifier.endpage6808en
dc.identifier.issn2470-1343
dc.identifier.issued10en
dc.identifier.journaltitleACS Omegaen
dc.identifier.startpage6795en
dc.identifier.urihttps://hdl.handle.net/10468/4946
dc.identifier.volume2en
dc.language.isoenen
dc.publisherAmerican Chemical Societyen
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/en
dc.rights© 2017 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en
dc.rights.urihttp://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlen
dc.subjectAb-initio calculationsen
dc.subjectDensity functional theoryen
dc.subjectDFTen
dc.subjectMetal-oxidesen
dc.subjectCatalystsen
dc.subjectElectronic structureen
dc.subjectEnergy levelen
dc.subjectNanoclustersen
dc.subjectRedox reactionen
dc.subjectThermodynamic propertiesen
dc.titleSurface modification of perfect and hydroxylated TiO2 rutile (110) and anatase (101) with chromium oxide nanoclustersen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
acsomega.7b01118.pdf
Size:
2.76 MB
Format:
Adobe Portable Document Format
Description:
Published version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: