Thermally stable external cavity laser based on silicon nitride periodic nanostructures

dc.contributor.authorIadanza, Simone
dc.contributor.authorBakoz, Andrei P.
dc.contributor.authorPanettieri, D.
dc.contributor.authorTedesco, A.
dc.contributor.authorGiannino, G.
dc.contributor.authorGrande, M.
dc.contributor.authorO'Faolain, Liam
dc.contributor.funderScience Foundation Irelanden
dc.contributor.funderEuropean Research Councilen
dc.contributor.funderHorizon 2020en
dc.date.accessioned2018-11-30T11:28:30Z
dc.date.available2018-11-30T11:28:30Z
dc.date.issued2018-09-27
dc.description.abstractIn this paper we demonstrate a thermally stable silicon nitride external cavity (SiN EC) laser based on a 250 μm sized Reflective Semiconductor Optical Amplifier (RSOA) butt-coupled to a series of Si 3 N 4 Bragg gratings acting as wavelength selective reflectors. The laser shows power outputs over 3 mW, a very low lasing threshold of 12 mA and with a typical Side-Mode Suppression Ratio of 45 dB. In this configuration a mode-hop free lasing regime over a range of 47 mA has been achieved (from 15 mA to 62 mA). Thermal stability of the lasing wavelength at temperatures up to 80°C is demonstrated. Further on, experimental results on a passive chip based on new 1D photonic crystal cavities are shown to have higher Q-Factors. This paves the way to avoiding thermal wavelength drifts and unlocks the possibility for these devices to be integrated in Dense WDM and optical-interconnect technologies, where transceivers must operate over a wide temperature range without active cooling.en
dc.description.sponsorshipScience Foundation Ireland (SFI16/ERCS/3838); European Research Council (Starting Grant 337508)en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.articleidTu.C5.4
dc.identifier.citationIadanza, S., Bakoz, A., Panettieri, D., Tedesco, A., Giannino, G., Grande, M. and O’Faolain, L. (2018) ‘Thermally stable external cavity aser Bbased on silicon nitride periodic nanostructures’, 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania. 1-5 July, Tu.C5.4 (4pp). doi:10.1109/ICTON.2018.8473622en
dc.identifier.doi10.1109/ICTON.2018.8473622
dc.identifier.endpage4en
dc.identifier.issn2161-2064
dc.identifier.startpage1en
dc.identifier.urihttps://hdl.handle.net/10468/7159
dc.language.isoenen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.ispartof20th International Conference on Transparent Optical Networks (ICTON) 2018
dc.relation.projectinfo:eu-repo/grantAgreement/SFI/SFI Research Centres/12/RC/2276/IE/I-PIC Irish Photonic Integration Research Centre/en
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::RIA/688516/EU/CmOs Solutions for Mid-board Integrated transceivers with breakthrough Connectivity at ultra-low Cost/COSMICCen
dc.relation.urihttp://icton2018.upb.ro/
dc.rights© 2018, IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en
dc.subjectSilicon compoundsen
dc.subjectCavity resonatorsen
dc.subjectLaser modesen
dc.subjectThermal stabilityen
dc.subjectGratingsen
dc.subjectLaser stabilityen
dc.titleThermally stable external cavity laser based on silicon nitride periodic nanostructuresen
dc.typeConference itemen
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SimoneIadanzaICTON2018.pdf
Size:
960.87 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: