Application of mathematical modelling for investigating oxygen transfer energy requirement and process design of an aerobic continuous stirred tank fermenter
dc.contributor.author | Fitzpatrick, John J. | |
dc.contributor.author | Gonçalves de Lima, Karina | |
dc.contributor.author | Keller, Eoin | |
dc.date.accessioned | 2017-08-21T12:20:25Z | |
dc.date.available | 2017-08-21T12:20:25Z | |
dc.date.issued | 2017-02-27 | |
dc.date.updated | 2017-08-21T12:12:46Z | |
dc.description.abstract | Fermentation kinetic and oxygen transfer modelling coupled with energy analysis was applied to investigate how key input design variables influenced fermenter size, feed substrate requirement, wasted substrate and aeration system electrical energy requirement. The study showed that trade-offs and compromises are required to select the values of key input variables that can produce superior process designs in terms of the output variables. For example, reducing steady-state oxygen concentration reduced aeration system energy requirements and associated carbon footprint but increased fermenter size and associated cost. Mathematical modelling can assist in more precisely zoning in quantitatively on the selection of design input variable values that can produce a best compromise between conflicting design output variables. Mathematical modelling can also highlight design sensitivities. For example, if the steady-state sugar concentration is reduced below a certain value, then this can lead to an exponential increase in fermenter volume and associated cost, thus it is prudent to operate on the conservative side of this value. | en |
dc.description.status | Peer reviewed | en |
dc.description.version | Accepted Version | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Fitzpatrick, J. J., Gonçalves de Lima, K. and Keller, E. (2017) ‘Application of mathematical modelling for investigating oxygen transfer energy requirement and process design of an aerobic continuous stirred tank fermenter’, Food and Bioproducts Processing, 103, pp. 39-48. doi:10.1016/j.fbp.2017.02.009 | en |
dc.identifier.doi | 10.1016/j.fbp.2017.02.009 | |
dc.identifier.endpage | 48 | en |
dc.identifier.issn | 0960-3085 | |
dc.identifier.journaltitle | Food and Bioproducts Processing | en |
dc.identifier.startpage | 39 | en |
dc.identifier.uri | https://hdl.handle.net/10468/4472 | |
dc.identifier.volume | 103 | en |
dc.language.iso | en | en |
dc.publisher | Elsevier Ltd | en |
dc.rights | © 2017, Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.subject | Continuous stirred tank fermenter | en |
dc.subject | Process design | en |
dc.subject | Mathematical modelling | en |
dc.subject | Energy | en |
dc.subject | Environmental impact | en |
dc.subject | Oxygen transfer | en |
dc.title | Application of mathematical modelling for investigating oxygen transfer energy requirement and process design of an aerobic continuous stirred tank fermenter | en |
dc.type | Article (peer-reviewed) | en |