Symmetries of holomorphic geometric structures on tori

dc.contributor.authorDumitrescu, Sorin
dc.contributor.authorMcKay, Benjamin
dc.date.accessioned2018-07-30T12:30:36Z
dc.date.available2018-07-30T12:30:36Z
dc.date.issued2016
dc.description.abstractWe prove that any holomorphic locally homogeneous geometric structure on a complex torus of dimension two, modelled on a complex homogeneous surface, is translation invariant. We conjecture that this result is true in any dimension. In higher dimension, we prove it for G nilpotent. We also prove that for any given complex algebraic homogeneous space (X, G), the translation invariant (X, G)-structures on tori form a union of connected components in the deformation space of (X, G)-structures.en
dc.description.statusPeer revieweden
dc.description.versionPublished Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationDumitrescu, S. and McKay, B. (2016). 'Symmetries of holomorphic geometric structures on tori', Complex Manifolds, 3(1), pp. 1-15. doi: 10.1515/coma-2016-0001en
dc.identifier.doi10.1515/coma-2016-0001
dc.identifier.endpage15
dc.identifier.issn2300-7443
dc.identifier.issued1
dc.identifier.journaltitleComplex Manifoldsen
dc.identifier.startpage1
dc.identifier.urihttps://hdl.handle.net/10468/6546
dc.identifier.volume3
dc.language.isoenen
dc.publisherDe Gruyter Openen
dc.relation.urihttps://www.degruyter.com/view/j/coma.2016.3.issue-1/coma-2016-0001/coma-2016-0001.xml
dc.rights© 2016, Sorin Dumitrescu and Benjamin McKay. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Licenseen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectLocally homogeneous structuresen
dc.subjectComplex torien
dc.titleSymmetries of holomorphic geometric structures on torien
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Symmetries of holomorphic geometric.pdf
Size:
508.25 KB
Format:
Adobe Portable Document Format
Description:
Published Version