Cancer Biology at UCC - Masters by Research Theses

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 4 of 4
  • Item
    Impact of endosomal recycling inhibitors on drug resistant and immune tolerant breast cancers
    (University College Cork, 2024) Chembukavu, Suraj Narayanan; Lindsay, Andrew
    Breast cancer (BC) is the most common and frequent of all the cancers, accounting for about 25% of all the cases of cancer detected in women annually. There are a number of approved drugs on the market that have been developed or repurposed for the treatment of BC. However, a recurrent problem faced in the clinic is the emergence of drug resistance, which can be intrinsic or acquired. Prolonged periods of chemotherapeutics and targeted therapy have resulted in the development of acquired resistance through a number of different adaptations. This project focuses on resistance developed by various sub-types of breast cancer cells through drug-therapy-induced senescence. Previous studies have reported the cytoprotective nature of this cell cycle arrest phenomenon upon prolonged exposure to targeted- and chemotherapeutics. This study investigates specific molecular mechanisms governing therapy-induced senescence, the impact it has on the membrane trafficking of iron transporters, and the potential repurposing of endosomal recycling inhibitors (ERIs) to target these drug-tolerant cells. Additionally, we examined the effects of ERIs on the total protein and surface levels of immune checkpoint proteins. This was done by targeting the recycling of the glycoprotein PDL1, which is expressed on the surface of some tumour cells and binds to its cognate receptors on the surface of T cells. PDL1-PD1 binding leads to T cell inactivation. A number of ERIs were used to determine their impact on the levels of PDL1.
  • Item
    Novel RNA-based biomarkers for ovarian cancer – uncovering how LINC01132 is regulated by the tumour suppressor protein, p53
    (University College Cork, 2023) Hartigan, Shaun; Dean, Kellie; McKenna, Sharon L.; Irish Research Council
    Ovarian cancer is one of the deadliest female cancers worldwide. Most cases are detected in advanced stages, as it is difficult to diagnose ovarian cancer early due to nonspecific symptoms. Presently, there are no sensitive biomarkers to identify early-stage disease. Over 60% of ovarian cancer cases have a mutation in p53, a tumour suppressor transcription factor which counteracts cell stress and oncogenic signals. Most mutations occur within p53’s DNA-binding domain, a vital region which facilitates its anchorage to target gene promoters. Previous data found numerous long-non-coding RNAs (lncRNAs) are differentially expressed in ovarian cancer cells with mutant TP53, compared to those with the wildtype gene. Here, we show that three p53 mutants (R175H, I195T and R248Q) commonly found in ovarian cancer patients, were unable to activate firefly luciferase expression from a synthetic p53-responsive promoter, reflecting the impact of p53 core domain mutations on its ability to bind target promoters and transactivate gene expression. In silico genome-wide ChIP-seq analysis of differentially expressed lncRNAs identified three (MEG3, LINC01132, and LINC2960) containing regions within -1 kb of their transcription start sites, showing interaction with p53. Another four (EMX20S, PRICKLE2-DT, LINC00887 and LINC02610 contained p53-interacting regions within -5 kb. Division of the region up to -6,995 bp of the LINC01132 transcription start site into a distal, middle, and proximal segment, and subsequent cloning upstream of firefly luciferase, allowed us to assess p53 activity at the LINC01132 promoter. Western blot analysis could not detect luciferase expression from either segment under wildtype p53 overexpression, despite the proximal segment containing six p53-interacting sites. To determine the true response of wildtype and mutant p53 binding to the LINC01132 promoter, future quantitative reverse-transcriptase PCR and luciferase assays should be conducted, given their higher sensitivity compared to Western blot analysis. To improve patient prognosis in ovarian cancer, there is vital necessity to discover specific biomarkers, which can diagnose and monitor disease progression. LncRNAs can be detected in blood, so linking expression of differentially expressed lncRNAs to the mutational status of p53 in ovarian cancer, and studying how these change with the therapies, is novel, previously unexplored, and may aid in biomarker discovery.
  • Item
    Targeting transcription-regulating cyclin dependent kinase 12 for the treatment of breast cancer
    (University College Cork, 2022-11-27) Burns, Martha; Krajewska, Malgorzata
    Cyclin-dependent Kinase 12 (CDK12) with its binding partner Cyclin K regulates transcription through phosphorylation of RNA Polymerase II (RNA Pol II) at serine 2. Previous work showed that inhibition of CDK12 leads to decreased expression of DNA damage response (DDR) genes and sensitizes cancer cells to DNA damage-inducing agents. However, the exact mechanism by which this is achieved remains unclear. This study aimed to investigate CDK12 as a therapeutic target in breast cancer and to identify new drug combinations involving the inhibition of CDK12 and clinically relevant inhibitors of DNA repair. We demonstrated that CDK12 inhibitor SR-4835 is cytotoxic in MCF-7 breast cancer cells at a low nanomolar concentration. The observed toxicity was associated with G2-M cell cycle arrest, increased apoptosis, and DNA damage. We showed that CDK12 inhibition had a minor effect on the phosphorylation of RNA Pol II at serine 2 indicating that global transcription was not affected. Interestingly, we observed that CDK12 inhibition resulted in decreased expression of chromodomain helicase DNA binding protein 2 (CHD2), a potentially new target of CDK12. Next, we tested the combination of CDK12 inhibition with inhibitors of DNA repair including inhibitors of PARP (olaparib) and CHK1 (AZD7762) using a colony formation assay. The preliminary results indicate that combining CDK12 and CHK1 inhibition will likely have greater therapeutic potential than the combination of CDK12 and PARP inhibition. Future studies are required to establish the exact role of CDK12 in transcription and DDR as well as to investigate further the potential of combining CDK12 and CHK1 inhibition in breast cancer.
  • Item
    Evaluation of selective γ-secretase inhibitors as novel modulators of TNF-α-mediated apoptosis
    (University College Cork, 2021-05-04) O'Brien, Ciara; McCarthy, Justin V.; Science Foundation Ireland
    The presenilin proteins (presenilin 1 and presenilin 2) were identified in mutagenesis screens causing the early onset forms of familial Alzheimer’s disease (FAD) in 1995. Subsequently characterized as the catalytic subunits of the γ-secretase protease complexes, the presenilins are responsible for the cleavage of the amyloid precursor protein (APP) and generation of amyloid beta (Aβ). To date, γ-secretase proteases have over 120 substrates which demonstrate contribution to a diverse range of cellular processes and signalling events. However, recent findings have revealed several γ-secretase-independent presenilin functions, including calcium signalling, autophagy and apoptosis. We and others have previously reported members of the TNF receptor super-family as substrates for γ-secretase proteolysis, and that presenilin-deficient cells have increased resistance to TNFα-induced apoptosis. In this study, we sought to determine whether loss of presenilin expression or loss of γ-secretase protease activity is associated with increased resistance to TNFα-induced apoptosis. Utilizing the cleavage of caspase 3 and Poly ADP ribose polymerase (PARP) in target cells as a readout, we tested the anti-apoptotic characteristics of a panel of well characterized γ-secretase inhibitors. In this study, we show that loss of presenilin expression is associated with increased resistance to TNFα-induced apoptosis, and that loss of γ-secretase protease activity does not affect sensitivity to TNFα-induced apoptosis. These observations suggest a γ-secretase-independent role of presenilins in the regulation of TNFα-induced apoptosis.