Model of thermo-optic nonlinear dynamics of photonic crystal cavities

Show simple item record Iadanza, Simone Clementi, C. Hu, C. Schulz, Sebastian A. Gerace, D. Galli, M. O'Faolain, Liam 2020-12-10T10:04:48Z 2020-12-10T10:04:48Z 2020-12-03
dc.identifier.citation Iadanza, S., Clementi, M., Hu, C., Schulz, S. A., Gerace, D., Galli, M. and O'Faolain, L. (2020) ‘Model of thermo-optic nonlinear dynamics of photonic crystal cavities’, Physical Review B, 102(24), 245404 (15pp). doi: 10.1103/PhysRevB.102.245404 en
dc.identifier.volume 102 en
dc.identifier.issued 24 en
dc.identifier.startpage 1 en
dc.identifier.endpage 15 en
dc.identifier.issn 2469-9950
dc.identifier.doi 10.1103/PhysRevB.102.245404 en
dc.description.abstract The wavelength scale confinement of light offered by photonic crystal (PhC) cavities is one of the fundamental features on which many important on-chip photonic components are based, opening silicon photonics to a wide range of applications from telecommunications to sensing. This trapping of light in a small space also greatly enhances optical nonlinearities and many potential applications build on these enhanced light-matter interactions. In order to use PhCs effectively for this purpose it is necessary to fully understand the nonlinear dynamics underlying PhC resonators. In this work, we derive a first principles thermal model outlining the nonlinear dynamics of optically pumped silicon two-dimensional (2D) PhC cavities by calculating the temperature distribution in the system in both time and space. We demonstrate that our model matches experimental results well and use it to describe the behavior of different types of PhC cavity designs. Thus, we demonstrate the model's capability to predict thermal nonlinearities of arbitrary 2D PhC microcavities in any material, only by substituting the appropriate physical constants. This renders the model critical for the development of nonlinear optical devices prior to fabrication and characterization. en
dc.description.sponsorship Science Foundation Ireland (17/QERA/3472, 12/RC/2276_P2); Ministero dell’Istruzione, dell’Università e della Ricerca (Dipartimenti di Eccellenza Program 2018-2022) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © 2020, American Physical Society. All rights reserved. en
dc.subject Nonlinear dynamics en
dc.subject Optically pumped silicon two-dimensional (2D) PhC cavities en
dc.subject Temperature distribution en
dc.subject Thermal nonlinearities en
dc.subject 2D PhC microcavities en
dc.title Model of thermo-optic nonlinear dynamics of photonic crystal cavities en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Simone Iadanza, Tyndall National Institute, University College Cork, Cork, Ireland. T: +353-21- 2346177 E: en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Research Council en
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder Horizon 2020 en
dc.contributor.funder Ministero dell’Istruzione, dell’Università e della Ricerca en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review B en
dc.internal.IRISemailaddress en
dc.identifier.articleid 245404 en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP2::ERC/337508/EU/DAtacommunications based on NanophotoniC Resonators/DANCER en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::RIA/780240/EU/mid infraREd Fully Integrated CHemical sensors/REDFINCH en
dc.relation.project info:eu-repo/grantAgreement/FWF/Internationale Projekte/I 3760/AT/CMOS Compatible Single Photon Sources (CUSPIDOR)/ en
dc.identifier.eissn 2469-9969

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement