Emergence of power laws in noncritical neuronal systems

Show simple item record

dc.contributor.author Faqeeh, Ali
dc.contributor.author Osat, Saeed
dc.contributor.author Radicchi, Filippo
dc.contributor.author Gleeson, James P.
dc.date.accessioned 2021-02-22T15:31:33Z
dc.date.available 2021-02-22T15:31:33Z
dc.date.issued 2019-07-02
dc.identifier.citation Faqeeh, A., Osat, S., Radicchi, F. and Gleeson, J. P. (2019) 'Emergence of power laws in noncritical neuronal systems', Physical Review E, 100(1), 010401 (7 pp). doi: 10.1103/PhysRevE.100.010401 en
dc.identifier.volume 100 en
dc.identifier.issued 1 en
dc.identifier.startpage 1 en
dc.identifier.endpage 7 en
dc.identifier.issn 2470-0045
dc.identifier.uri http://hdl.handle.net/10468/11089
dc.identifier.doi 10.1103/PhysRevE.100.010401 en
dc.description.abstract Experimental and computational studies provide compelling evidence that neuronal systems are characterized by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To certify and explain our findings we develop an analytical approach based on percolation theory and branching processes techniques. en
dc.description.sponsorship Science Foundation Ireland (Grants No. 16/IA/4470 and No. 16/RC/3918); National Science Foundation (CMMI-1552487); U.S. Army Research Office (W911NF-16-1-0104). en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.relation.uri https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.010401
dc.rights © 2019 American Physical Society en
dc.subject Continuous percolation transition en
dc.subject Degree distributions en
dc.subject Network diffusion en
dc.subject Network structure en
dc.subject Neuronal dynamics en
dc.subject Neuronal network activity en
dc.subject Spreading en
dc.title Emergence of power laws in noncritical neuronal systems en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother James P. Gleeson, Insight Centre for Data Analytics, University College Cork, Cork, Ireland. +353-21-490-3000 en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder National Science Foundation en
dc.contributor.funder Army Research Office en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review E en
dc.identifier.eissn 2470-0053


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement