JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:Mo, H. and Kennedy, M. P. (2016) 'Influence of initial conditions on the fundamental periods of LFSR-dithered MASH digital delta-sigma modulators with constant inputs', IEEE Transactions on Circuits and Systems II: Express Briefs, 64(4), pp. 372-376. doi: 10.1109/TCSII.2016.2567480
A digital delta-sigma modulator (DDSM) with a constant input may produce a periodic output with a small fundamental period, resulting in strong tonal output behavior instead of the expected shaped white quantization noise. In practice, the problem is alleviated by dithering the DDSM. Pseudorandom dither generators based on linear feedback shift registers (LFSRs) are widely used to "break up" periodic cycles in DDSMs with constant inputs. Pseudorandom dither signals are themselves periodic and can lead to relatively short output sequences from dithered DDSMs. It is known that the fundamental period of the output signal depends not only on the input and the initial condition of the DDSM but also on the initial state of the LFSR. This brief shows that bad LFSR initial conditions can lead to ineffective dithering, producing short cycles and strong tonal behavior. Furthermore, it explains how to set the initial state of the DDSM as a function of the initial state of the LFSR in order to obtain a maximum-length dithered output.
Hao, Guangbo; Kong, Xianwen; Reuban, Robert L.(Elsevier, 2011-03)
This paper presents normalized, nonlinear and analytical models of spatial compliant parallel modules: multi-beam modules with a large range of motion. The models address the nonlinearity of load-equilibrium equations, ...
Milk enriched in conjugated linoleic acid (CLA) was obtained from cows on pasture supplemented with full-fat rapeseeds (FFR; 2·26g cis 9, trans 11 (c9, t11)-CLA/100g fatty acid methyl esters) and full-fat soyabeans (1·83g ...
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement