Ab initio calculations of group 4 metallocene reaction mechanisms: atomic layer deposition and bond activation catalysis

Show simple item record

dc.contributor.advisor Elliott, Simon D. en
dc.contributor.author Zydor, Aleksandra
dc.date.accessioned 2013-09-19T09:09:59Z
dc.date.available 2014-09-20T04:00:04Z
dc.date.issued 2013
dc.date.submitted 2013
dc.identifier.citation Zydor, A. 2013. Ab initio calculations of group 4 metallocene reaction mechanisms: atomic layer deposition and bond activation catalysis. PhD Thesis, University College Cork. en
dc.identifier.endpage 154
dc.identifier.uri http://hdl.handle.net/10468/1235
dc.description.abstract Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems. en
dc.description.sponsorship European Commission (EU_FP6 REALISE project (NMP4-CT-2006-016172); Enterprise Ireland (Innovation Partnership ‘Hi-kCaps’ (IP/2009/0035)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher University College Cork en
dc.rights © 2013, Aleksandra Zydor. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/ en
dc.subject Bond activation analysis en
dc.subject Atomic layer deposition en
dc.subject Group 4 metallocene reaction mechanism en
dc.subject Density functional theory (DFT) en
dc.subject.lcsh Metal complexes en
dc.subject.lcsh Metallocenes en
dc.subject.lcsh Density functionals en
dc.title Ab initio calculations of group 4 metallocene reaction mechanisms: atomic layer deposition and bond activation catalysis en
dc.type Doctoral thesis en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD (Science) en
dc.internal.availability Full text available en
dc.description.version Accepted Version
dc.contributor.funder European Commission en
dc.contributor.funder Enterprise Ireland en
dc.description.status Not peer reviewed en
dc.internal.school Chemistry en
dc.internal.school Tyndall National Institute en
dc.check.reason This thesis is due for publication or the author is actively seeking to publish this material en
dc.check.opt-out Not applicable en
dc.thesis.opt-out false
dc.check.chapterOfThesis 7,8
dc.check.embargoformat E-thesis on CORA only en
ucc.workflow.supervisor cora@ucc.ie


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2013, Aleksandra Zydor. Except where otherwise noted, this item's license is described as © 2013, Aleksandra Zydor.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement