Probing lattice dynamics in ST12 phase germanium nanowires by Raman spectroscopy

Show simple item record Raha, Sreyan Srivastava, Divya Biswas, Subhajit Garcia-Gil, Adrià Karttunen, Antii J. Holmes, Justin D. Singha, Achintya 2022-01-10T12:32:42Z 2022-01-10T12:32:42Z 2021-12-08
dc.identifier.citation Raha, S., Srivastava, D., Biswas, S., Garcia-Gil, A., Karttunen, A. J., Holmes, J. D. and Singha, A. (2021) 'Probing lattice dynamics in ST12 phase germanium nanowires by Raman spectroscopy', Applied Physics Letters, 119, (7 pp). doi: 10.1063/5.0066744 en
dc.identifier.volume 119 en
dc.identifier.startpage 1 en
dc.identifier.endpage 7 en
dc.identifier.issn 0003-6951
dc.identifier.doi 10.1063/5.0066744 en
dc.description.abstract Germanium (Ge) plays a crucial role in setting up important functionalities for silicon-compatible photonics. Diamond cubic germanium is an extensively studied semiconductor, although its other exotic forms, like BC8, ST8, ST12 phases, may possess distinct electronic properties. We have fabricated stable ST12-Ge nanowires via a self-seeded bottom-up three phase growth in a confined supercritical toluene environment. Here, we report on the direct evidence of the presence of the ST12 phase by a combination of Raman spectroscopy and first-principles calculations using density functional theory (DFT). It is important to remark that the DFT calculation predicts all the Raman active optical phonon modes of the P 4321 structure, and it is in very good agreement with the experimental results. The phonon dynamics as a function of temperature is investigated through Raman measurements at temperatures varying from 80 to 300 K. First-order temperature coefficients for all the observed Raman modes are estimated from the linear temperature dependence of the phonon shifts. A complete set of isobaric Grüneisen parameters is reported for all Raman modes of ST12-Ge nanowire, and the values are lower compared to the same for Si, dc-Ge bulk, and Ge nanowire. These results have important implications for understanding thermal properties of ST12-Ge nanowire. en
dc.description.sponsorship Science and Engineering Research Board (SERB), India (File No. EMR/2017/002107); CSC, Finland (the Finnish IT Center for Science, computational resources) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights Published under an exclusive license by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Appl. Phys. Lett. 119, 232105 (2021) and may be found at en
dc.subject In-situ integration en
dc.subject Density of states en
dc.subject High pressure en
dc.subject Amorphous silicon en
dc.subject Crystal structure en
dc.subject Ge en
dc.subject Anodes en
dc.subject Transitions en
dc.subject Nanocrystals en
dc.subject Parameters en
dc.subject First-principle calculations en
dc.subject Polymorphism en
dc.subject Nanowires en
dc.subject Lattice dynamics en
dc.subject Germanium en
dc.subject Raman spectroscopy en
dc.subject Density functional theory en
dc.title Probing lattice dynamics in ST12 phase germanium nanowires by Raman spectroscopy en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en 2022-01-07T12:20:42Z
dc.description.version Accepted Version en
dc.internal.rssid 595538718
dc.internal.wokid WOS:000729403700013
dc.contributor.funder Science and Engineering Research Board en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder CSC – IT Center for Science en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.copyrightchecked No
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.internal.IRISemailaddress en
dc.identifier.articleid 232105 en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/14/IA/2513/IE/Silicon Compatible, Direct Band-Gap Nanowire Materials For Beyond-CMOS Devices/ en

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement