Surface orientation effects in crystalline-amorphous silicon interfaces

Show simple item record

dc.contributor.author Nolan, Michael
dc.contributor.author Legesse, Merid
dc.contributor.author Fagas, Gíorgos
dc.date.accessioned 2014-07-28T15:04:03Z
dc.date.available 2014-07-28T15:04:03Z
dc.date.issued 2012-09-25
dc.identifier.citation Nolan, M., Legesse, M. and Fagas, G. (2012) 'Surface orientation effects in crystalline-amorphous silicon interfaces', Physical Chemistry Chemical Physics, 14(43), pp. 15173-15179. doi: 10.1039/C2CP42679J en
dc.identifier.volume 14 en
dc.identifier.issued 43 en
dc.identifier.startpage 15173 en
dc.identifier.endpage 15179 en
dc.identifier.issn 1463-9076
dc.identifier.uri http://hdl.handle.net/10468/1604
dc.identifier.doi 10.1039/C2CP42679J
dc.description.abstract In this paper we present the results of empirical potential and density functional theory (DFT) studies of models of interfaces between amorphous silicon (a-Si) or hydrogenated amorphous Si (a-Si:H) and crystalline Si (c-Si) on three unreconstructed silicon surfaces, namely (100), (110) and (111). In preparing models of a-Si on c-Si, melting simulations are run with classical molecular dynamics (MD) at 3000 K for 10 ps to melt part of the crystalline surface and the structure is quenched to 300 K using a quench rate of 6 x 10(12) K s(-1) and finally relaxed with DFT. Incorporating the optimum hydrogen content in a-Si to passivate undercoordinated Si, followed by DFT relaxation, produces hydrogenated amorphous silicon on crystalline surfaces, a-Si:H/c-Si. The (100) surface is the least stable crystalline surface and forms the thickest amorphous Si region, while the most stable (110) surface forms the smallest amorphous region. Calculated radial distribution functions (RDF) in the amorphous and crystalline layers are consistent with a-Si and c-Si and indicate a structural interface region one layer thick. The electronic density of states shows an evolution from c-Si to a-Si (or a-Si:H), with a larger electronic interface layer, suggesting that the electronic properties are more strongly perturbed by interface formation compared to the atomic structure. The computed optical absorption spectra show strong effects arising from the formation of different a-Si and a-Si:H regions in different Si surfaces. en
dc.description.sponsorship Science Foundation Ireland (Irish Centre for High End Computing); Higher Education Authority (Irish Centre for High End Computing); en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher The Royal Society of Chemistry en
dc.rights © the Owner Societies 2012; Published by Royal Society of Chemistry. This is the Accepted Manuscript version of a published work that appeared in final form in Physical Chemistry Chemical Physics. To access the final published version of record, see http://pubs.rsc.org/en/content/articlepdf/2012/cp/c2cp42679j en
dc.subject Junction solar-cells en
dc.subject Molecular-dynamics en
dc.subject Energy en
dc.title Surface orientation effects in crystalline-amorphous silicon interfaces en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2013-10-29T21:39:34Z
dc.description.version Accepted Version en
dc.internal.rssid 190495711
dc.internal.wokid 000310005700051
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Seventh Framework Programme
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Chemistry Chemical Physics en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257856/EU/Semiconducting Nanowire Platform for Autonomous Sensors/SINAPS


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement