JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:RAINVILLE, L.-C., CAROLAN, D., VARELA, A. C., DOYLE, H. & SHEEHAN, D. 2014. Proteomic evaluation of citrate-coated silver nanoparticles toxicity in Daphnia magna. Analyst, 139, 1678-1686. doi: 10.1039/C3AN02160B
Recent decades have seen a strong increase in the promise and uses of nanotechnology. This is correlated with their growing release in the environment and there is concern that nanomaterials may endanger ecosystems. Silver nanoparticles (AgNPs) have some of the most varied applications, making their release into the environment unavoidable. In order to assess their potential toxicity in aquatic environments, the acute toxicity of citrate-coated AgNPs to Daphnia magna was measured and compared to that of AgNO3. AgNPs were found to be ten times less toxic by mass than silver ions, and most of this toxicity was removed by ultracentrifuging. At the protein level, the two forms of silver had different impacts. Both increased protein thiol content, while only AgNP increased carbonyl levels. In 2DE of samples labelled for carbonyls, no feature was significantly affected by both compounds, indicating different modes of toxicity. Identified proteins showed functional overlap between the two compounds: vitellogenins (vtg) were present in most features identified, indicating their role as a general stress sensor. In addition to vtg, hemoglobin levels were increased by the AgNP exposure while 14-3-3 protein (a regulatory protein) carbonylation levels were reduced by AgNO3. Overall, this study confirms the previously observed lower acute toxicity of AgNPs, while demonstrating that the toxicity of both forms of silver follow somewhat different biologic pathways, potentially leading to different interactions with natural compounds or pollutants in the aquatic environment.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement