Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors

Show simple item record

dc.contributor.author Buitrago, Elizabeth
dc.contributor.author Badia, Monserrat Fernández-Bolaños
dc.contributor.author Georgiev, Yordan M.
dc.contributor.author Yu, Ran
dc.contributor.author Lotty, Olan
dc.contributor.author Holmes, Justin D.
dc.contributor.author Nightingale, Adrian M.
dc.contributor.author Guerin, Höel M.
dc.contributor.author Ionescu, Adrian M.
dc.date.accessioned 2016-02-10T17:39:04Z
dc.date.available 2016-02-10T17:39:04Z
dc.date.issued 2014-04-03
dc.identifier.citation BUITRAGO, E., BADIA, M. F.-B., GEORGIEV, Y. M., YU, R., LOTTY, O., HOLMES, J. D., NIGHTINGALE, A. M., GUERIN, H. M. & IONESCU, A. M. 2014. Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors. Sensors and Actuators B: Chemical, 199, 291-300. http://www.sciencedirect.com/science/article/pii/S092540051400375X en
dc.identifier.volume 199 en
dc.identifier.startpage 291 en
dc.identifier.endpage 300 en
dc.identifier.issn 0925-4005
dc.identifier.uri http://hdl.handle.net/10468/2277
dc.identifier.doi 10.1016/j.snb.2014.03.099
dc.description.abstract A 3D vertically stacked silicon nanowire (SiNW) field effect transistor featuring a high density array of fully depleted channels gated by a backgate and one or two symmetrical platinum side-gates through a liquid has been electrically characterized for their implementation into a robust biosensing system. The structures have also been characterized electrically under vacuum when completely surrounded by a thick oxide layer. When fully suspended, the SiNWs may be surrounded by a conformal high-κ gate dielectric (HfO2) or silicon dioxide. The high density array of nanowires (up to 7 or 8 × 20 SiNWs in the vertical and horizontal direction, respectively) provides for high drive currents (1.3 mA/μm, normalized to an average NW diameter of 30 nm at VSG = 3 V, and Vd = 50 mV, for a standard structure with 7 × 10 NWs stacked) and high chances of biomolecule interaction and detection. The use of silicon on insulator substrates with a low doped device layer significantly reduces leakage currents for excellent Ion/Ioff ratios >106 of particular importance for low power applications. When the nanowires are submerged in a liquid, they feature a gate all around architecture with improved electrostatics that provides steep subthreshold slopes (SS < 75 mV/dec), low drain induced barrier lowering (DIBL < 20 mV/V) and high transconductances (gm > 10 μS) while allowing for the entire surface area of the nanowire to be available for biomolecule sensing. The fabricated devices have small SiNW diameters (down to dNW ∼ 15–30 nm) in order to be fully depleted and provide also high surface to volume ratios for high sensitivities. en
dc.description.sponsorship Science Foundation Ireland (SFI grant no. 09/IN.1/I2602.); European Commission (FP7 Semiconducting Nanowire Platform for Autonomous Sensors (SiNAPS) European Collaborative Project (Grant 257856), Integrated Project eBRAINSICT-25748) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S092540051400375X
dc.rights © 2014 Elsevier B.V. © 2014, This submitted version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ To access the published work, see http://dx.doi.org/10.1016/j.snb.2014.03.099 en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject ISFET en
dc.subject Sensor en
dc.subject FinFET en
dc.subject SiNW en
dc.subject GAA en
dc.subject Ion sensitive field effect transistor en
dc.subject Biomolecules en
dc.subject Gate dielectrics en
dc.subject Hafnium oxides en
dc.subject Leakage currents en
dc.subject Nanowires en
dc.subject Sensors en
dc.subject Silicon on insulator technology en
dc.subject Biomolecule interactions en
dc.subject Drain-induced barrier lowering en
dc.subject Electrical characterization en
dc.subject High surface-to-volume ratio en
dc.subject Silicon-on-insulator substrates en
dc.subject Liquids en
dc.title Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors en
dc.title.alternative Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET for biosensing applications en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2014-10-21T11:13:45Z
dc.description.version Submitted Version en
dc.internal.rssid 261554906
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Sensors and Actuators, B: Chemical en
dc.internal.copyrightchecked No. !!CORA!! Preprint can be shared immediately. After the embargo period, authors can share their accepted manuscript via non-commercial hosting platforms such as their institutional repository. Link to the formal publication via its DOI, and bear a CC-BY-NC-ND license. https://www.elsevier.com/about/company-information/policies/sharing en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress j.holmes@ucc.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2014 Elsevier B.V. © 2014, This submitted version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ To access the published work, see http://dx.doi.org/10.1016/j.snb.2014.03.099 Except where otherwise noted, this item's license is described as © 2014 Elsevier B.V. © 2014, This submitted version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ To access the published work, see http://dx.doi.org/10.1016/j.snb.2014.03.099
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement