dc.contributor.author |
Buitrago, Elizabeth |
|
dc.contributor.author |
Badia, Monserrat Fernández-Bolaños |
|
dc.contributor.author |
Georgiev, Yordan M. |
|
dc.contributor.author |
Yu, Ran |
|
dc.contributor.author |
Lotty, Olan |
|
dc.contributor.author |
Holmes, Justin D. |
|
dc.contributor.author |
Nightingale, Adrian M. |
|
dc.contributor.author |
Guerin, Höel M. |
|
dc.contributor.author |
Ionescu, Adrian M. |
|
dc.date.accessioned |
2016-02-10T17:39:04Z |
|
dc.date.available |
2016-02-10T17:39:04Z |
|
dc.date.issued |
2014-04-03 |
|
dc.identifier.citation |
BUITRAGO, E., BADIA, M. F.-B., GEORGIEV, Y. M., YU, R., LOTTY, O., HOLMES, J. D., NIGHTINGALE, A. M., GUERIN, H. M. & IONESCU, A. M. 2014. Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors. Sensors and Actuators B: Chemical, 199, 291-300. http://www.sciencedirect.com/science/article/pii/S092540051400375X |
en |
dc.identifier.volume |
199 |
en |
dc.identifier.startpage |
291 |
en |
dc.identifier.endpage |
300 |
en |
dc.identifier.issn |
0925-4005 |
|
dc.identifier.uri |
http://hdl.handle.net/10468/2277 |
|
dc.identifier.doi |
10.1016/j.snb.2014.03.099 |
|
dc.description.abstract |
A 3D vertically stacked silicon nanowire (SiNW) field effect transistor featuring a high density array of fully depleted channels gated by a backgate and one or two symmetrical platinum side-gates through a liquid has been electrically characterized for their implementation into a robust biosensing system. The structures have also been characterized electrically under vacuum when completely surrounded by a thick oxide layer. When fully suspended, the SiNWs may be surrounded by a conformal high-κ gate dielectric (HfO2) or silicon dioxide. The high density array of nanowires (up to 7 or 8 × 20 SiNWs in the vertical and horizontal direction, respectively) provides for high drive currents (1.3 mA/μm, normalized to an average NW diameter of 30 nm at VSG = 3 V, and Vd = 50 mV, for a standard structure with 7 × 10 NWs stacked) and high chances of biomolecule interaction and detection. The use of silicon on insulator substrates with a low doped device layer significantly reduces leakage currents for excellent Ion/Ioff ratios >106 of particular importance for low power applications. When the nanowires are submerged in a liquid, they feature a gate all around architecture with improved electrostatics that provides steep subthreshold slopes (SS < 75 mV/dec), low drain induced barrier lowering (DIBL < 20 mV/V) and high transconductances (gm > 10 μS) while allowing for the entire surface area of the nanowire to be available for biomolecule sensing. The fabricated devices have small SiNW diameters (down to dNW ∼ 15–30 nm) in order to be fully depleted and provide also high surface to volume ratios for high sensitivities. |
en |
dc.description.sponsorship |
Science Foundation Ireland (SFI grant no. 09/IN.1/I2602.); European Commission (FP7 Semiconducting Nanowire Platform for Autonomous Sensors (SiNAPS) European Collaborative Project (Grant 257856), Integrated Project eBRAINSICT-25748) |
en |
dc.format.mimetype |
application/pdf |
en |
dc.language.iso |
en |
en |
dc.publisher |
Elsevier |
en |
dc.relation.uri |
http://www.sciencedirect.com/science/article/pii/S092540051400375X |
|
dc.rights |
© 2014 Elsevier B.V. © 2014, This submitted version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ To access the published work, see http://dx.doi.org/10.1016/j.snb.2014.03.099 |
en |
dc.rights.uri |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
en |
dc.subject |
ISFET |
en |
dc.subject |
Sensor |
en |
dc.subject |
FinFET |
en |
dc.subject |
SiNW |
en |
dc.subject |
GAA |
en |
dc.subject |
Ion sensitive field effect transistor |
en |
dc.subject |
Biomolecules |
en |
dc.subject |
Gate dielectrics |
en |
dc.subject |
Hafnium oxides |
en |
dc.subject |
Leakage currents |
en |
dc.subject |
Nanowires |
en |
dc.subject |
Sensors |
en |
dc.subject |
Silicon on insulator technology |
en |
dc.subject |
Biomolecule interactions |
en |
dc.subject |
Drain-induced barrier lowering |
en |
dc.subject |
Electrical characterization |
en |
dc.subject |
High surface-to-volume ratio |
en |
dc.subject |
Silicon-on-insulator substrates |
en |
dc.subject |
Liquids |
en |
dc.title |
Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors |
en |
dc.title.alternative |
Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET for biosensing applications |
en |
dc.type |
Article (peer-reviewed) |
en |
dc.internal.authorcontactother |
Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie |
en |
dc.internal.availability |
Full text available |
en |
dc.date.updated |
2014-10-21T11:13:45Z |
|
dc.description.version |
Submitted Version |
en |
dc.internal.rssid |
261554906 |
|
dc.contributor.funder |
Science Foundation Ireland |
en |
dc.contributor.funder |
European Commission |
en |
dc.description.status |
Peer reviewed |
en |
dc.identifier.journaltitle |
Sensors and Actuators, B: Chemical |
en |
dc.internal.copyrightchecked |
No. !!CORA!! Preprint can be shared immediately. After the embargo period, authors can share their accepted manuscript via non-commercial hosting platforms such as their institutional repository. Link to the formal publication via its DOI, and bear a CC-BY-NC-ND license. https://www.elsevier.com/about/company-information/policies/sharing |
en |
dc.internal.licenseacceptance |
Yes |
en |
dc.internal.IRISemailaddress |
j.holmes@ucc.ie |
en |