JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:COLLINS, G., SCHMIDT, M., O'DWYER, C., HOLMES, J. D. & MCGLACKEN, G. P. 2014. The Origin of Shape Sensitivity in Palladium-Catalyzed Suzuki–Miyaura Cross Coupling Reactions. Angewandte Chemie International Edition, 53, 4142-4145. http://dx.doi.org/10.1002/anie.201400483
The shape sensitivity of Pd catalysts in Suzuki–Miyaura coupling reactions is studied using nanocrystals enclosed by well-defined surface facets. The catalytic performance of Pd nanocrystals with cubic, cuboctahedral and octahedral morphologies are compared. Superior catalytic reactivity is observed for Pd NCs with {100} surface facets compared to {111} facets. The origin of the enhanced reactivity associated with a cubic morphology is related to the leaching susceptibility of the nanocrystals. Molecular oxygen plays a key role in facilitating the leaching of Pd atoms from the surface of the nanocrystals. The interaction of O2 with Pd is itself facet-dependent, which in turn gives rise to more efficient leaching from {100} facets, compared to {111} facets under the reaction conditions.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement