A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote

Show simple item record

dc.contributor.author Koshro Pour, Naser
dc.contributor.author Kayal, M.
dc.contributor.author Jia, G.
dc.contributor.author Eisenhawer, B.
dc.contributor.author Falk, F.
dc.contributor.author Nightingale, Adrian M.
dc.contributor.author DeMello, John C.
dc.contributor.author Georgiev, Yordan M.
dc.contributor.author Petkov, Nikolay
dc.contributor.author Holmes, Justin D.
dc.contributor.author Nolan, Michael
dc.contributor.author Fagas, Gíorgos
dc.date.accessioned 2016-04-20T13:59:05Z
dc.date.available 2016-04-20T13:59:05Z
dc.date.issued 2013-05-17
dc.identifier.citation Pour, N. K., Kayal, M., Jia, G., Eisenhawer, B., Falk, F., Nightingale, A., DeMello, J. C., Georgiev, Y. M., Petkov, N., Holmes, J. D., Nolan, M. and Fagas, G. (2013) A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote. Proceedings of SPIE 8763, Smart Sensors, Actuators, and MEMS VI, Grenoble, France, 24 April. doi:10.1117/12.2017520 en
dc.identifier.volume 8763 en
dc.identifier.startpage 87631Q en
dc.identifier.endpage 87631Q-14 en
dc.identifier.issn 0277-786X
dc.identifier.uri http://hdl.handle.net/10468/2467
dc.identifier.doi 10.1117/12.2017520
dc.description.abstract A micro-power energy harvesting system based on core(crystalline Si)-shell(amorphous Si) nanowire solar cells together with a nanowire-modified CMOS sensing platform have been developed to be used in a dust-sized autonomous chemical sensor node. The mote (SiNAPS) is augmented by low-power electronics for power management and sensor interfacing, on a chip area of 0.25mm2. Direct charging of the target battery (e.g., NiMH microbattery) is achieved with end-to-end efficiencies up to 90% at AM1.5 illumination and 80% under 100 times reduced intensity. This requires matching the voltages of the photovoltaic module and the battery circumventing maximum power point tracking. Single solar cells show efficiencies up to 10% under AM1.5 illumination and open circuit voltages, Voc, of 450-500mV. To match the battery’s voltage the miniaturised solar cells (~1mm2 area) are connected in series via wire bonding. The chemical sensor platform (mm2 area) is set up to detect hydrogen gas concentration in the low ppm range and over a broad temperature range using a low power sensing interface circuit. Using Telran TZ1053 radio to send one sample measurement of both temperature and H2 concentration every 15 seconds, the average and active power consumption for the SiNAPS mote are less than 350nW and 2.1 μW respectively. Low-power miniaturised chemical sensors of liquid analytes through microfluidic delivery to silicon nanowires are also presented. These components demonstrate the potential of further miniaturization and application of sensor nodes beyond the typical physical sensors, and are enabled by the nanowire materials platform. en
dc.description.uri http://spie.org/Publications/Proceedings/Paper/10.1117/12.2017520 en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Society of Photo-optical Instrumentation Engineers (SPIE) en
dc.relation.ispartof SPIE 8763, Smart Sensors, Actuators, and MEMS VI, Grenoble, France, 24 April, 2013
dc.relation.uri http://spie.org/
dc.rights © Copyright 2013 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. http://dx.doi.org/10.1117/12.2017520 en
dc.subject Mote en
dc.subject Silicon nanowires en
dc.subject Chemical sensors en
dc.subject Microfluidics en
dc.subject Energy harvesting en
dc.subject Electronics design en
dc.subject Low power en
dc.subject Heterojunction solar cells en
dc.subject Electron beam resist en
dc.subject Hydrogen silsesquioxane en
dc.subject Solar cells en
dc.title A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote en
dc.type Conference item en
dc.internal.authorcontactother Justin D. Holmes, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: j.holmes@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2013-08-20T17:50:02Z
dc.description.version Accepted Version en
dc.internal.rssid 212169996
dc.contributor.funder European Commission en
dc.contributor.funder Seventh Framework Programme
dc.description.status Peer reviewed en
dc.identifier.journaltitle Proceedings of SPIE en
dc.internal.copyrightchecked No. !!CORA!! AV + set statement + doi link to SPIE Abstract online clearly displayed. http://spie.org/conferences-and-exhibitions/authors-and-presenters/information/copyright-form---required-for-publication en
dc.internal.licenseacceptance Yes en
dc.internal.conferencelocation Grenoble, France en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257856/EU/Semiconducting Nanowire Platform for Autonomous Sensors/SINAPS

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement