Impurity profiling and synthesis of precursors to the hallucinogenic amphetamine DOB

Show simple item record

dc.contributor.advisor Fitzpatrick, Dara en
dc.contributor.advisor Keating, J J en Quille, Jonathan 2016-08-04T10:36:55Z 2015 2015
dc.identifier.citation Quille, J. 2015. Impurity profiling and synthesis of precursors to the hallucinogenic amphetamine DOB. PhD Thesis, University College Cork. en
dc.identifier.endpage 344 en
dc.description.abstract DOB (4‐bromo‐2,5‐dimethoxyamphetamine) is a newly emerging hallucinogenic amphetamine that sparked serious health warnings in Ireland, following its first seizure back in 2003. Known more commonly as “snowball”, this drug is highly potent and may be used as a substitute to ecstasy (MDMA) and lysergic acid diethylamide (LSD). To date, the work carried out on the impurity profiling of DOB is limited in comparison to amphetamine, methamphetamine and MDMA. In this work, the impurity profile of 4‐bromo‐2,5‐dimethoxyphenyl‐2‐propanone (4‐Br‐2,5‐P2P) is explored. This ketone is a direct precursor to DOB. Its more versatile non‐bromo analogue, 2,5‐ dimethoxyphenyl‐2‐propanone (2,5‐P2P) is also examined, as in addition to DOB, it may be used in the synthesis of a range of several other hallucinogenic amphetamines. A number of different routes to both 2,5‐P2P and 4‐Br‐2,5‐P2P were investigated. For each of these routes, the impurities produced were carefully isolated. Following isolation, the impurities were fully characterised (by 1H‐NMR/13C‐NMR spectroscopy, IR, MS), in order to aid structure elucidation. Compounds not easily resolved by flash column chromatography were analysed by LC‐MS and/or independently synthesised for the purpose of attaining reference standards. Adaptation of the well‐known ‘phenylacetic acid route’ to synthesis of both 2,5‐P2P and 4‐Br‐2,5‐P2P, was found to provide low yields of the expected ketone products. Four impurities were isolated during the preparation of both ketones. The yield of one of these impurities (possessing a dibenzylketone core), was greatly influenced by the amount of acetic anhydride reagent used during the reaction. Having carried out the reaction with several different equivalents of acetic anhydride, it was found that formation of the ‘dibenzylketone’ could not be eliminated. This may increase its likelihood of being detected in the final drug product. The ‘Darzens route’, having very recently emerged as a synthetic route to amphetamine and MDMA precursors, was discovered to be a viable route for manufacture of 2,5‐P2P and 4‐Br‐2,5‐P2P. Despite execution of the reaction being more tedious, the route provides superior yields (≈50–60%) to those achieved using the ‘phenylacetic acid route’ (≈35–38%). Incorporation of a bromine atom (at the aromatic 4‐position) is required at some stage during synthesis of DOB. The bromination of many intermediates/starting materials was therefore also examined in detail. Bromination of the acid starting material 2,5‐dimethoxyphenylacetic acid (2,5‐PAA) was found to be clean and high yielding. This was in stark contrast to the bromination of the benzaldehyde starting material, the ketone precursor 2,5‐P2P and the dibenzylketone‐based impurity. Numerous brominated products were isolated from each of these reactions, many of which were novel compounds, and previously unreported as impurities in the literature. The unpredictable/nondescript nature of these brominations is likely to have a significant impact on the impurity profile of illicitly produced DOB. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher University College Cork en
dc.rights © 2015, Jonathan Quille. en
dc.rights.uri en
dc.subject DOB en
dc.subject Amphetamine en
dc.subject Impurity profiling en
dc.title Impurity profiling and synthesis of precursors to the hallucinogenic amphetamine DOB en
dc.type Doctoral thesis en
dc.type.qualificationlevel Doctoral en
dc.type.qualificationname PhD (Science) en
dc.internal.availability Full text not available en Restricted to everyone for five years en 2023-08-04T10:36:55Z
dc.description.version Accepted Version
dc.contributor.funder Irish Research Council en
dc.description.status Not peer reviewed en Chemistry en
dc.check.reason This thesis is due for publication or the author is actively seeking to publish this material en
dc.check.opt-out Not applicable en
dc.thesis.opt-out false
dc.check.entireThesis Entire Thesis Restricted
dc.check.embargoformat Both hard copy thesis and e-thesis en
dc.internal.conferring Autumn 2015 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

© 2015, Jonathan Quille. Except where otherwise noted, this item's license is described as © 2015, Jonathan Quille.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement