Investigating routes toward atomic layer deposition of silicon carbide: Ab initio screening of potential silicon and carbon precursors

Show simple item record

dc.contributor.author Filatova, Ekaterina A.
dc.contributor.author Hausmann, Dennis
dc.contributor.author Elliott, Simon D.
dc.date.accessioned 2016-11-03T10:22:17Z
dc.date.available 2016-11-03T10:22:17Z
dc.date.issued 2016-10-18
dc.identifier.citation Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D. (2017) 'Investigating routes toward atomic layer deposition of silicon carbide: Ab initio screening of potential silicon and carbon precursors'. Journal of Vacuum Science & Technology A, 35 (11):01B103-1-01B103-6. doi: 10.1116/1.4964890 en
dc.identifier.volume 35 en
dc.identifier.issued 11 en
dc.identifier.startpage 01B103-1 en
dc.identifier.endpage 01B103-6 en
dc.identifier.issn 0734-2101
dc.identifier.uri http://hdl.handle.net/10468/3235
dc.identifier.doi 10.1116/1.4964890
dc.description.abstract Silicon carbide (SiC) is a promising material for electronics due to its hardness, and ability to carry high currents and high operating temperature. SiC films are currently deposited using chemical vapor deposition (CVD) at high temperatures 1500–1600 °C. However, there is a need to deposit SiC-based films on the surface of high aspect ratio features at low temperatures. One of the most precise thin film deposition techniques on high-aspect-ratio surfaces that operates at low temperatures is atomic layer deposition (ALD). However, there are currently no known methods for ALD of SiC. Herein, the authors present a first-principles thermodynamic analysis so as to screen different precursor combinations for SiC thin films. The authors do this by calculating the Gibbs energy ΔGΔG of the reaction using density functional theory and including the effects of pressure and temperature. This theoretical model was validated for existing chemical reactions in CVD of SiC at 1000 °C. The precursors disilane (Si2H6), silane (SiH4), or monochlorosilane (SiH3Cl) with ethyne (C2H2), carbontetrachloride (CCl4), or trichloromethane (CHCl3) were predicted to be the most promising for ALD of SiC at 400 °C. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.rights © 2016 American Vacuum Society; AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in J. Vac. Sci. Technol. A 35(1), Jan/Feb 2017 and may be found at http://scitation.aip.org/content/avs/journal/jvsta/35/1/10.1116/1.4964890. en
dc.subject Free energy en
dc.subject Wide band gap semiconductors en
dc.subject Atomic layer deposition en
dc.subject Density functional theory en
dc.subject Semiconductor growth en
dc.subject Silicon compounds en
dc.subject Ab initio calculations en
dc.subject Semiconductor thin films en
dc.title Investigating routes toward atomic layer deposition of silicon carbide: Ab initio screening of potential silicon and carbon precursors en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Simon Elliott, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: simon.elliott@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this item is restricted until 12 months after publication by the request of the publisher. en
dc.check.date 2017-10-18
dc.date.updated 2016-11-03T10:02:31Z
dc.description.version Published Version en
dc.internal.rssid 370431980
dc.contributor.funder Lam Research Corporation, United States en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Vacuum Science & Technology A en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress simon.elliott@tyndall.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement