Shaken not stirred: creating exotic angular momentum states by shaking an optical lattice

Show simple item record

dc.contributor.author Kiely, Anthony
dc.contributor.author Benseny, Albert
dc.contributor.author Busch, Thomas
dc.contributor.author Ruschhaupt, Andreas
dc.date.accessioned 2016-12-05T09:33:47Z
dc.date.available 2016-12-05T09:33:47Z
dc.date.issued 2016-10-18
dc.identifier.citation Kiely, A., Benseny, A., Busch, T. and Ruschhaupt, A. (2016) 'Shaken not stirred: creating exotic angular momentum states by shaking an optical lattice', Journal of Physics B: Atomic, Molecular and Optical Physics, 49(21), 215003 (11pp). doi:10.1088/0953-4075/49/21/215003 en
dc.identifier.volume 49 en
dc.identifier.issued 21 en
dc.identifier.startpage 6 en
dc.identifier.endpage 16 en
dc.identifier.issn 0953-4075
dc.identifier.uri http://hdl.handle.net/10468/3347
dc.identifier.doi 10.1088/0953-4075/49/21/215003
dc.description.abstract We propose a method to create higher orbital states of ultracold atoms in the Mott regime of an optical lattice. This is done by periodically modulating the position of the trap minima (known as shaking) and controlling the interference term of the lasers creating the lattice. These methods are combined with techniques of shortcuts to adiabaticity. As an example of this, we show specifically how to create an anti-ferromagnetic type ordering of angular momentum states of atoms. The specific pulse sequences are designed using Lewis-Riesenfeld invariants and a fourlevel model for each well. The results are compared with numerical simulations of the full Schrodinger equation. en
dc.description.sponsorship Science Foundation Ireland (Grant No. SFI/13/ISCA/2845) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher IOP Publishing en
dc.rights © 2016 IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. en
dc.rights.uri https://creativecommons.org/licenses/by/3.0/ en
dc.subject Mott insulator en
dc.subject Atoms en
dc.subject Transition en
dc.subject Superfluid en
dc.subject Domains en
dc.subject Gases en
dc.title Shaken not stirred: creating exotic angular momentum states by shaking an optical lattice en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Andreas Ruschhaupt, Physics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: aruschhaupt@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2016-12-05T09:24:03Z
dc.description.version Published Version en
dc.internal.rssid 374510240
dc.internal.wokid WOS:000386596500002
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Okinawa Institute of Science and Technology Graduate University en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Physics B: Atomic, Molecular and Optical Physics en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress aruschhaupt@ucc.ie en
dc.identifier.articleid 215003


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2016 IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Except where otherwise noted, this item's license is described as © 2016 IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement