Electron transport properties of sub-3-nm diameter copper nanowires

Show simple item record

dc.contributor.author Jones, Sarah L. T.
dc.contributor.author Sanchez-Soares, Alfonso
dc.contributor.author Plombon, John J.
dc.contributor.author Kaushik, Ananth P.
dc.contributor.author Nagle, Roger E.
dc.contributor.author Clarke, James S.
dc.contributor.author Greer, James C.
dc.date.accessioned 2017-01-17T10:03:04Z
dc.date.available 2017-01-17T10:03:04Z
dc.date.issued 2015-09-11
dc.identifier.citation Jones, S. L. T., Sanchez-Soares, A., Plombon, J. J., Kaushik, A. P., Nagle, R. E., Clarke, J. S. and Greer, J. C. (2015) 'Electron transport properties of sub-3-nm diameter copper nanowires', Physical Review B, 92(11), pp. 115413. doi:10.1103/PhysRevB.92.115413 en
dc.identifier.volume 92 en
dc.identifier.startpage 115413-1 en
dc.identifier.endpage 115413-10 en
dc.identifier.uri http://hdl.handle.net/10468/3473
dc.identifier.doi 10.1103/PhysRevB.92.115413
dc.description.abstract Density functional theory and density functional tight binding are applied to model electron transport in copper nanowires of approximately 1- and 3-nm diameters with varying crystal orientation and surface termination. The copper nanowires studied are found to be metallic irrespective of diameter, crystal orientation, and/or surface termination. Electron transmission is highly dependent on crystal orientation and surface termination. Nanowires oriented along the [110] crystallographic axis consistently exhibit the highest electron transmission while surface oxidized nanowires show significantly reduced electron transmission compared to unterminated nanowires. Transmission per unit area is calculated in each case; for a given crystal orientation we find that this value decreases with diameter for unterminated nanowires but is largely unaffected by diameter in surface oxidized nanowires for the size regime considered. Transmission pathway plots show that transmission is larger at the surface of unterminated nanowires than inside the nanowire and that transmission at the nanowire surface is significantly reduced by surface oxidation. Finally, we present a simple model which explains the transport per unit area dependence on diameter based on transmission pathways results. en
dc.description.sponsorship Intel Corporation (Intel-Tyndall research collaboration sponsored by Intel Components Research); Irish Research Council (Postgraduate scholarship); QuantamWise A/S (support and access to the QUANTUMWISE simulation software); Science Foundation Ireland (SFI Investigator program, Grant No. 13/IA/1956.) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Physical Society en
dc.rights © 2015 American Physical Society en
dc.subject Resistivity en
dc.subject Surface en
dc.subject Currents en
dc.subject Films en
dc.subject Model en
dc.title Electron transport properties of sub-3-nm diameter copper nanowires en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother James Greer, Tyndall Graduate Studies, University College Cork, Cork, Ireland. +353-21-490-3000 Email: jim.greer@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-01-14T21:17:35Z
dc.description.version Published Version en
dc.internal.rssid 322051007
dc.internal.wokid 000361037300005
dc.contributor.funder Intel Corporation en
dc.contributor.funder Irish Research Council en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder QuantumWise A/S, Denmark en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Physical Review B en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress jim.greer@tyndall.ie en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement