Citation:Marchetti, R., Vitali, V., Lacava, C., Cristiani, I., Giuliani, G., Muffato, V., Fournier, M., Abrate, S., Gaudino, R., Temporiti, E., Carroll, L. and Minzioni, P. (2017) 'Low-Loss Micro-Resonator Filters Fabricated in Silicon by CMOS-Compatible Lithographic Techniques: Design and Characterization', Applied Sciences, 7(2), pp. 174. doi:10.3390/app7020174
Optical resonators are fundamental building-blocks for the development of Si-photonics-integrated circuits, as tunable on-chip optical filters. In addition to the specific spectral shape, which may vary according to a particular application, extremely low losses from these devices are a crucial requirement. In the current state-of-the-art devices, most low-loss filters have only been demonstrated by exploiting ad hoc lithographic and etching techniques, which are not compatible with the standard CMOS (complementary metal-oxide semiconductor) process-flow available at Si-photonic foundries. In this paper, we describe the design and optimization of optical micro-resonators, based on Si-waveguides with a height lower than the standard ones (i.e., less than 220 nm), prepared on SOI (silicon on insulator) platform, which allow the realization of high-performance optical filters with an insertion loss lower than 1 dB, using only previously validated lithographic etch-depths.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement