Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale

Show simple item record

dc.contributor.author Monaghan, Scott
dc.contributor.author Greer, James C.
dc.contributor.author Elliott, Simon D.
dc.date.accessioned 2017-07-12T09:07:46Z
dc.date.available 2017-07-12T09:07:46Z
dc.date.issued 2005-06-01
dc.identifier.citation Monaghan, S., Greer, J. C. and Elliott, S. D. (2005) 'Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale', Journal of Applied Physics, 97(11), pp. 114911. doi: 10.1063/1.1926399 en
dc.identifier.volume 97
dc.identifier.issued 11
dc.identifier.startpage 1
dc.identifier.endpage 9
dc.identifier.issn 0021-8979
dc.identifier.uri http://hdl.handle.net/10468/4231
dc.identifier.doi 10.1063/1.1926399
dc.description.abstract The hafnium and zirconium silicates, (MO2)(x)(SiO2)(1-x), with M=Hf/Zr, are being considered as high-k gate dielectrics for field-effect transistors as a compromise between high permittivity and thermal stability during processing. Using atomic-scale models of silicates derived from hafnon/zircon, stability before and after simulated thermal annealing is calculated within a density-functional approach. These silicates are found to be thermodynamically unstable with respect to decomposition into SiO2 and MO2 (M=Hf/Zr). Segregation mechanisms on the atomic scale are studied leading to an insight as to an why SiO2-rich mixtures undergo spinodal decomposition and why, by contrast, MO2-rich phases are metastable, decomposing below typical process temperatures. en
dc.description.sponsorship European Commission ("Information Society Technologies” programme of the European Community through the HIKE project) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.1926399
dc.rights © 2005 American Institute of Physics, This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Monaghan, S., Greer, J. C. and Elliott, S. D. (2005) 'Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale', Journal of Applied Physics, 97(11), pp. 114911 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.1926399 en
dc.subject Total-energy calculations en
dc.subject Wave basis-set en
dc.subject Gate dielectrics en
dc.subject Phase-separation en
dc.subject Transition en
dc.subject Dioxide en
dc.subject Diagram en
dc.subject Alloys en
dc.subject Films en
dc.subject Oxide en
dc.subject Zircon en
dc.subject Annealing en
dc.subject Amorphous state en
dc.subject Silica en
dc.subject Crystal structure en
dc.title Thermal decomposition mechanisms of hafnium and zirconium silicates at the atomic scale en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Simon Elliott,Tyndall National Institute, University College Cork, Cork, Ireland +353-21-490-3000 Email: simon.elliott@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Science Foundation Ireland
dc.contributor.funder European Commission
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress simon.elliott@tyndall.ie en
dc.identifier.articleid 114911


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement