Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing

Show simple item record

dc.contributor.author Cabrera, W.
dc.contributor.author Brennan, B.
dc.contributor.author Dong, H.
dc.contributor.author O'Regan, Terrance P.
dc.contributor.author Povey, Ian M.
dc.contributor.author Monaghan, Scott
dc.contributor.author O'Connor, Éamon
dc.contributor.author Hurley, Paul K.
dc.contributor.author Wallace, R. M.
dc.contributor.author Chabal, Y. J.
dc.date.accessioned 2017-07-25T14:16:24Z
dc.date.available 2017-07-25T14:16:24Z
dc.date.issued 2014
dc.identifier.citation Cabrera, W., Brennan, B., Dong, H., O'Regan, T. P., Povey, I. M., Monaghan, S., O'Connor, É., Hurley, P. K., Wallace, R. M. and Chabal, Y. J. (2014) 'Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing', Applied Physics Letters, 104(1), pp. 011601. doi: 10.1063/1.4860960 en
dc.identifier.volume 104
dc.identifier.issued 1
dc.identifier.startpage 1
dc.identifier.endpage 5
dc.identifier.issn 0003-6951
dc.identifier.issn 1077-3118
dc.identifier.uri http://hdl.handle.net/10468/4264
dc.identifier.doi 10.1063/1.4860960
dc.description.abstract Diffusion of indium through HfO2 after post deposition annealing in N-2 or forming gas environments is observed in HfO2/In0.53Ga0.47As stacks by low energy ion scattering and X-ray photo electron spectroscopy and found to be consistent with changes in interface layer thickness observed by transmission electron microscopy. Prior to post processing, arsenic oxide is detected at the surface of atomic layer deposition-grown HfO2 and is desorbed upon annealing at 350 degrees C. Reduction of the interfacial layer thickness and potential densification of HfO2, resulting from indium diffusion upon annealing, is confirmed by an increase in capacitance. (C) 2014 AIP Publishing LLC. en
dc.description.sponsorship National Science Foundation (U.S. -Ireland RD Partnership (NSF-ECCS-0925844), NSF (CHE 1300180)); Science Foundation Ireland (Grant No. 09/IN.1/I2633) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/abs/10.1063/1.4860960
dc.rights © 2014 AIP Publishing LLC.This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Cabrera, W., Brennan, B., Dong, H., O'Regan, T. P., Povey, I. M., Monaghan, S., O'Connor, É., Hurley, P. K., Wallace, R. M. and Chabal, Y. J. (2014) 'Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing', Applied Physics Letters, 104(1), pp. 011601 and may be found at http://aip.scitation.org/doi/abs/10.1063/1.4860960 en
dc.subject Energy ion-scattering en
dc.subject Gate dielectrics en
dc.subject Gaas en
dc.subject Spectroscopy en
dc.subject Desorption; Hfo2 en
dc.subject X-ray photoelectron spectroscopy en
dc.subject III-V semiconductorsInterface diffusion en
dc.subject Atomic layer deposition en
dc.subject Chemical interdiffusion en
dc.title Diffusion of In0.53Ga0.47As elements through hafnium oxide during post deposition annealing en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Ian Povey, Tyndall National Institute, University College Cork, Cork, Ireland +353-21-234-6076, Email: ian.povey@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.internal.wokid WOS:000329838800016
dc.contributor.funder National Science Foundation
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.IRISemailaddress ian.povey@tyndall.ie en
dc.identifier.articleid 11601


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement