Citation:Paganelli, S., Lorenzo, S., Apollaro, T. J. G., Plastina, F. and Giorgi, G. L. (2013) 'Routing quantum information in spin chains', Physical Review A, 87(6), 062309. (8pp). doi: 10.1103/PhysRevA.87.062309
Two different models are presented that allow for efficiently performing routing of a quantum state. Both cases involve an XX spin chain working as a data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local and/or global magnetic fields. Quantum routing is achieved in the first of the models considered by weakly coupling the sender and the receiver to the data bus. On the other hand, in the second model, local magnetic fields acting on additional spins located between the sender and receiver and the data bus allow us to perform high-fidelity routing.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement