Transport properties and electrical device characteristics with the TiMeS computational platform: Application in silicon nanowires

Show simple item record

dc.contributor.author Sharma, Dimpy
dc.contributor.author Ansari, Lida
dc.contributor.author Feldman, Baruch
dc.contributor.author Iakovidis, M.
dc.contributor.author Greer, James C.
dc.contributor.author Fagas, Gíorgos
dc.date.accessioned 2017-09-20T10:06:33Z
dc.date.available 2017-09-20T10:06:33Z
dc.date.issued 2013
dc.identifier.citation Sharma, D., Ansari, L., Feldman, B., Iakovidis, M., Greer, J. C. and Fagas, G. (2013) 'Transport properties and electrical device characteristics with the TiMeS computational platform: Application in silicon nanowires', Journal of Applied Physics, 113(20), 203708 (8pp). doi: 10.1063/1.4807578 en
dc.identifier.volume 113
dc.identifier.issued 20
dc.identifier.startpage 1
dc.identifier.endpage 8
dc.identifier.issn 0021-8979
dc.identifier.issn 1089-7550
dc.identifier.uri http://hdl.handle.net/10468/4725
dc.identifier.doi 10.1063/1.4807578
dc.description.abstract Nanoelectronics requires the development of a priori technology evaluation for materials and device design that takes into account quantum physical effects and the explicit chemical nature at the atomic scale. Here, we present a cross-platform quantum transport computation tool. Using first-principles electronic structure, it allows for flexible and efficient calculations of materials transport properties and realistic device simulations to extract current-voltage and transfer characteristics. We apply this computational method to the calculation of the mean free path in silicon nanowires with dopant and surface oxygen impurities. The dependence of transport on basis set is established, with the optimized double zeta polarized basis giving a reasonable compromise between converged results and efficiency. The current-voltage characteristics of ultrascaled (3 nm length) nanowire-based transistors with p-i-p and p-n-p doping profiles are also investigated. It is found that charge self-consistency affects the device characteristics more significantly than the choice of the basis set. These devices yield sourced-drain tunneling currents in the range of 0.5 nA (p-n-p junction) to 2 nA (p-i-p junction), implying that junctioned transistor designs at these length scales would likely fail to keep carriers out of the channel in the off-state. (C) 2013 AIP Publishing LLC. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri http://aip.scitation.org/doi/10.1063/1.4807578
dc.rights © 2013, AIP Publishing LLC. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Sharma, D., Ansari, L., Feldman, B., Iakovidis, M., Greer, J. C. and Fagas, G. (2013) 'Transport properties and electrical device characteristics with the TiMeS computational platform: Application in silicon nanowires', Journal of Applied Physics, 113(20), 203708 (8pp). doi: 10.1063/1.4807578 and may be found at http://aip.scitation.org/doi/10.1063/1.4807578 en
dc.subject Transport properties en
dc.subject Electronic structure en
dc.subject Doping en
dc.subject Basis sets en
dc.subject Materials properties en
dc.title Transport properties and electrical device characteristics with the TiMeS computational platform: Application in silicon nanowires en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Gíorgos Fagas, Tyndall National Institute, University College Cork, Cork, Ireland +353-21-490-3000 Email: georgios.fagas@tyndall.ie en
dc.internal.availability Full text available en
dc.description.version Published Version en
dc.contributor.funder Higher Education Authority
dc.contributor.funder Seventh Framework Programme
dc.contributor.funder Science Foundation Ireland
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.IRISemailaddress georgios.fagas@tyndall.ie en
dc.internal.IRISemailaddress lida.ansari@tyndall.ie en
dc.identifier.articleid 203708
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP1::ICT/257856/EU/Semiconducting Nanowire Platform for Autonomous Sensors/SINAPS
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/06/IN.1/I857/IE/Semiconductor and Molecular Wire Simulation for Technology Design/


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement