Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials

Show simple item record

dc.contributor.author Fronzi, Marco
dc.contributor.author Iwaszuk, Anna
dc.contributor.author Lucid, Aoife K.
dc.contributor.author Nolan, Michael
dc.date.accessioned 2017-11-01T15:30:06Z
dc.date.available 2017-11-01T15:30:06Z
dc.date.issued 2016-01-25
dc.identifier.citation Marco, F., Anna, I., Aoife, L. and Michael, N. (2016) 'Metal oxide nanocluster-modified TiO 2 as solar activated photocatalyst materials', Journal of Physics: Condensed Matter, 28(7), 074006 (23pp). doi: 10.1088/0953-8984/28/7/074006 en
dc.identifier.volume 28 en
dc.identifier.startpage 074006-1 en
dc.identifier.endpage 074006-23 en
dc.identifier.issn 0953-8984
dc.identifier.uri http://hdl.handle.net/10468/4942
dc.identifier.doi 10.1088/0953-8984/28/7/074006
dc.description.abstract In this review we describe our work on new TiO2 based photocatalysts. The key concept in our work is to form new composite structures by the modification of rutile and anatase TiO2 with nanoclusters of metal oxides and our density functional theory (DFT) level simulations are validated by experimental work synthesizing and characterizing surface-modified TiO2. We use DFT to show that nanoclusters of different metal oxides, TiO2, SnO/SnO2, PbO/PbO2, NiO and CuO can be adsorbed at rutile and anatase surfaces and can induce red shifts in the absorption edge to enable visible light absorption which is the first key requirement for a practical photocatalyst. We furthermore determine the origin of the red shift and discuss the factors influencing this shift and the fate of excited electrons and holes. For p-block metal oxides we show how the oxidation state of Sn and Pb can be used to tune both the magnitude of the red shift and also its mechanism. Finally, aiming to make our models more realistic, we present some new results on the stability of water at rutile and anatase surfaces and the effect of water on oxygen vacancy formation and on nanocluster modification. These nanocluster-modified TiO2 structures form the basis of a new class of photocatalysts which will be useful in oxidation reactions and with the suitable choice of nanocluster modifier can be applied to CO2 reduction. en
dc.description.sponsorship European Commission (European Commission through the COST Action CM1104 “Reducible Metal Oxides, Structure and Function”); Partnership for Advanced Computing in Europe AISBL, (PRACE (RI-261557, RI-283493 and RI-312763) (Distributed European Computing Initiative (DECI)); Science Foundation Ireland and Higher Education Authority (Irish Centre for High End Computing) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher IOP Publishing en
dc.rights © 2016 IOP Publishing Ltd. This is an author-created, un-copyedited version of an article accepted for publication in Journal of Physics: Condensed Matter. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/0953-8984/28/7/074006 en
dc.subject Photocatalysis en
dc.subject Density functional theory en
dc.subject DFT en
dc.subject Surface modification en
dc.subject Metal oxides, en
dc.subject Nanoclusters en
dc.subject Band gap en
dc.subject Visible-light photocatalysis en
dc.subject Charge-carrier separation en
dc.subject Modified titanium-dioxide en
dc.subject N-doped TiO2 en
dc.subject Rutile TiO2 en
dc.subject Anatase TiO2 en
dc.subject 110 surfaces en
dc.subject Iron oxide en
dc.subject Lone pair en
dc.title Metal oxide nanocluster-modified TiO2 as solar activated photocatalyst materials en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.date.updated 2017-11-01T15:16:48Z
dc.description.version Accepted Version en
dc.internal.rssid 360754913
dc.internal.wokid WOS:000368793200007
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Cooperation in Science and Technology en
dc.contributor.funder European Commission en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Partnership for Advanced Computing in Europe AISBL en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Physics-Condensed Matter en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.identifier.articleid 074006
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement