Citation:Fronzi, M., Tateyama, Y., Marzari, N., Nolan, M. and Traversa, E. (2016) 'First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO3 perovskite under strain conditions', Materials for Renewable and Sustainable Energy, 5(4), 14 (10pp). doi: 10.1007/s40243-016-0078-9
First-principles molecular dynamics simulations have been employed to analyse the proton diffusion in cubic BaZrO3 perovskite at 1300 K. A non-linear effect on the proton diffusion coefficient arising from an applied isometric strain up to 2 % of the lattice parameter, and an evident enhancement of proton diffusion under compressive conditions have been observed. The structural and electronic properties of BaZrO3 are analysed from Density Functional Theory calculations, and after an analysis of the electronic structure, we provide a possible explanation for an enhanced ionic conductivity of this bulk structure that can be caused by the formation of a preferential path for proton diffusion under compressive strain conditions. By means of Nudged Elastic Band calculations, diffusion barriers were also computed with results supporting our conclusions.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement