Multifunctional photo/thermal catalysts for the reduction of carbon dioxide

Show simple item record

dc.contributor.author Schwartzenberg, K. C.
dc.contributor.author Hamilton, J. W. J.
dc.contributor.author Lucid, Aoife K.
dc.contributor.author Weitz, E.
dc.contributor.author Notestein, J.
dc.contributor.author Nolan, Michael
dc.contributor.author Byrne, J. A.
dc.contributor.author Gray, K. A.
dc.date.accessioned 2017-11-02T12:07:03Z
dc.date.available 2017-11-02T12:07:03Z
dc.date.issued 2016-06-17
dc.identifier.citation Schwartzenberg, K. C., Hamilton, J. W. J., Lucid, A. K., Weitz, E., Notestein, J., Nolan, M., Byrne, J. A. and Gray, K. A. (2017) 'Multifunctional photo/thermal catalysts for the reduction of carbon dioxide', Catalysis Today, 280(Part 1), pp. 65-73. doi: 10.1016/j.cattod.2016.06.002 en
dc.identifier.volume 280 en
dc.identifier.issued Part 1 en
dc.identifier.startpage 65 en
dc.identifier.endpage 73 en
dc.identifier.issn 0920-5861
dc.identifier.uri http://hdl.handle.net/10468/4947
dc.identifier.doi 10.1016/j.cattod.2016.06.002
dc.description.abstract The photochemical fixation of CO2 to energy rich products for solar energy storage or feedstock chemicals is an attractive, albeit daunting, challenge. The overall feasibility of CO2 conversion is limited by the availability of efficient photo-active materials that meet the energetic requirements for CO2 reduction and are optically matched to the solar spectrum. Surface modification of TiO2 with earth abundant metal oxides presents one approach to develop visible active photocatalysts through band gap narrowing, while providing catalytic sites to lower the activation energy for CO2 reduction. In this work density functional theory was used to model the effect of surface modification of rutile and anatase using MnOx nanoclusters. The results indicate the formation of inter-band gap states following surface modification with MnOx, but surface water can change this. Oxygen vacancies are predicted to form in supported MnOx and the interaction with CO2 was investigated. MnOx-TiO2 was synthesized and characterised using surface analytical methods and photoelectrochemistry. The interaction of CO2 with the materials under irradiation was probed using in-situ FTIR to interrogate the role of oxygen vacancies in CO2 binding and reaction. These results provide insights into the requirements of a multifunctional catalyst for CO2 conversion. en
dc.description.sponsorship National Science Foundation and Science Foundation Ireland (US-Ireland R&D Partnership Program, NSF (CBET-1438721), SFI (SFI 14/US/E2915) and DELNI (USI065)); European Commission (European Cooperation in Science and Technology COST ActionCM1104 “Reducible Metal Oxides, Structure and Function”); Science Foundation Ireland and Higher Education Authority (SFI funded computing resources at Tyndall and the SFI/HEA funded Irish Centre for High End Computing); European Commission (Partnership in Advanced Computing (contracts RI-261557, RI-283493 and RI-312763)) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S0920586116303923
dc.rights © 2016 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject Photocatalysis en
dc.subject Carbon dioxide en
dc.subject Photoelectrochemistry en
dc.subject Density functional theory en
dc.subject Oxygen vacancies en
dc.title Multifunctional photo/thermal catalysts for the reduction of carbon dioxide en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted for 24 months after publication by request of the publisher. en
dc.check.date 2018-06-17
dc.date.updated 2017-11-02T10:33:06Z
dc.description.version Accepted Version en
dc.internal.rssid 417268024
dc.contributor.funder National Science Foundation en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder European Commission en
dc.contributor.funder Department of Education and Learning, Northern Ireland en
dc.contributor.funder European Cooperation in Science and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Catalysis Today en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress michael.nolan@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI US Ireland R&D Partnership/14/US/E2915/IE/SusChEM: Using theory-driven design to tailor novel nanocomposite oxides for solar fuel production/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Starting Investigator Research Grant (SIRG)/09/SIRG/I1620/IE/EMOIN: Engineering Metal Oxide Interfaces For Renewable Energy Photocatalysis/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2016 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license. Except where otherwise noted, this item's license is described as © 2016 Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND 4.0 license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement