dc.contributor.author |
Nolan, Michael |
|
dc.date.accessioned |
2018-01-03T12:10:12Z |
|
dc.date.available |
2018-01-03T12:10:12Z |
|
dc.date.issued |
2009-04-08 |
|
dc.identifier.citation |
Nolan, M. (2009) 'Healing of oxygen vacancies on reduced surfaces of gold-doped ceria', The Journal of Chemical Physics, 130(14), 144702 (9pp). doi: 10.1063/1.3110702 |
en |
dc.identifier.volume |
130 |
en |
dc.identifier.startpage |
144702-1 |
en |
dc.identifier.endpage |
144702-9 |
en |
dc.identifier.issn |
0021-9606 |
|
dc.identifier.uri |
http://hdl.handle.net/10468/5215 |
|
dc.identifier.doi |
10.1063/1.3110702 |
|
dc.description.abstract |
As an oxidation-reduction catalyst, ceria can catalyze molecular oxidation and reduction. There has been a focus on understanding and enhancing the vacancy formation process to improve the oxidative power of ceria. However, it is important to also address healing of the surface vacancy. To investigate healing of oxygen vacancies in ceria, we study the interaction of atomic and molecular oxygen and NO2 with oxygen vacancies on gold-doped (110) and (100) surfaces using density functional theory, corrected for on-site Coulomb interactions (DFT+U). For atomic and molecular oxygen, adsorption at the reduced surface is favorable and results in an oxygen atom sitting in an oxygen lattice site, healing the oxygen vacancy. On undoped surfaces, O-2 adsorbs as a peroxo (O(2)2-) species. However, on the doped (110) surface a superoxo (O-2-) species is present. When NO2 adsorbs (exothermically) at a divacancy surface, one oxygen of the molecule sits in the vacancy site and the N-O distances are elongated and an [NO2](-) anion forms, similar to the undoped surface. Vacancy healing of ceria surfaces is favorable, even if vacancy formation is enhanced, justifying the current focus on improving the oxidative power of ceria. We briefly examine a catalytic cycle: the reaction of CO with adsorbed O-2 on the undoped and doped surfaces, and find that the doped (110) surface facilitates CO oxidation. |
en |
dc.description.sponsorship |
European Commission (NATCO, Grant No. FP6-511925 and REALISE, Grant No. FP6-16172); Science Foundation Ireland (SFI funded computing resources at Tyndall and the SFI/Higher Education Authority funded Irish Centre for High End Computing (ICHEC)) |
en |
dc.format.mimetype |
application/pdf |
en |
dc.language.iso |
en |
en |
dc.publisher |
AIP Publishing |
en |
dc.rights |
© 2009 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in The Journal of Chemical Physics 2009 130:14, and may be found at http://aip.scitation.org/doi/abs/10.1063/1.3110702 |
en |
dc.subject |
Vacancies |
en |
dc.subject |
Surface oxidation |
en |
dc.subject |
Doping |
en |
dc.subject |
Adsorption |
en |
dc.subject |
Surface structure |
en |
dc.subject |
Catalysts |
en |
dc.subject |
Cerium compounds |
en |
dc.subject |
Density functional theory |
en |
dc.subject |
Gold |
en |
dc.subject |
Oxidation |
en |
dc.subject |
Oxygen |
en |
dc.subject |
Reduction (chemical) |
en |
dc.subject |
Surface chemistry |
en |
dc.subject |
Vacancies (crystal) |
en |
dc.subject |
Augmented-wave method |
en |
dc.subject |
Low-index surfaces |
en |
dc.subject |
Electronic-structure |
en |
dc.subject |
Co adsorption |
en |
dc.subject |
CeO2 |
en |
dc.subject |
Crystal |
en |
dc.subject |
Metals |
en |
dc.subject |
Nanoparticles |
en |
dc.subject |
Spectroscopy |
en |
dc.subject |
Transition |
en |
dc.title |
Healing of oxygen vacancies on reduced surfaces of gold-doped ceria |
en |
dc.type |
Article (peer-reviewed) |
en |
dc.internal.authorcontactother |
Michael Nolan, Tyndall Theory Modelling & Design Centre, University College Cork, Cork, Ireland. +353-21-490-3000 Email: michael.nolan@tyndall.ie |
en |
dc.internal.availability |
Full text available |
en |
dc.date.updated |
2017-12-20T16:18:52Z |
|
dc.description.version |
Published Version |
en |
dc.internal.rssid |
243944334 |
|
dc.internal.wokid |
000265617200040 |
|
dc.contributor.funder |
European Commission
|
en |
dc.contributor.funder |
Sixth Framework Programme
|
en |
dc.contributor.funder |
Science Foundation Ireland
|
en |
dc.contributor.funder |
Higher Education Authority
|
en |
dc.description.status |
Peer reviewed |
en |
dc.identifier.journaltitle |
Journal of Chemical Physics |
en |
dc.internal.copyrightchecked |
No !!CORA!! |
en |
dc.internal.licenseacceptance |
Yes |
en |
dc.internal.IRISemailaddress |
michael.nolan@tyndall.ie |
en |