Avalanche breakdown timing statistics for silicon singlephoton avalanche diodes

Show simple item record

dc.contributor.author Petticrew, J. D.
dc.contributor.author Dimler, S. D.
dc.contributor.author Zhou, X.
dc.contributor.author Morrison, Alan P.
dc.contributor.author Tan, C. H.
dc.contributor.author Ng, J. S.
dc.date.accessioned 2018-01-09T12:21:50Z
dc.date.available 2018-01-09T12:21:50Z
dc.date.issued 2017-12-04
dc.identifier.citation Petticrew, J. D., Dimler, S. J., Zhou, X., Morrison, A. P., Tan, C. H. and Ng, J. S. (2018) 'Avalanche Breakdown Timing Statistics for Silicon Single Photon Avalanche Diodes', IEEE Journal of Selected Topics in Quantum Electronics, 24(2), 3801506 (6pp). doi: 10.1109/JSTQE.2017.2779834 en
dc.identifier.volume 24 en
dc.identifier.issued 2 en
dc.identifier.startpage 3801506-1 en
dc.identifier.endpage 3801506-6 en
dc.identifier.issn 1077-260X
dc.identifier.uri http://hdl.handle.net/10468/5249
dc.identifier.doi 10.1109/JSTQE.2017.2779834
dc.description.abstract Silicon-based single photon avalanche diodes (SPADs) are widely used as single photon detectors of visible and near infrared photons. There has, however, been a lack of models accurately interpreting the physics of impact ionization (the mechanism behind avalanche breakdown) for these devices. In this paper, we present a statistical simulation model for silicon SPADs that is capable of predicting breakdown probability, mean time to breakdown, and timing jitter. Our model inherently incorporates carriers’ dead space due to phonon scattering and allows for nonuniform electric fields. Model validation included avalanche gain, excess noise factor, breakdown voltage, breakdown probability, and timing statistics. Simulating an n-on-p and a p-on-n SPAD design using our model, we found that the n-on-p design offers significantly improved mean time to breakdown and timing jitter characteristics. For a breakdown probability of 0.5, mean time to breakdown and timing jitter from the n-on-p design were 3 and 4 times smaller compared to those from the p-on-n design. The data reported in this paper are available from the ORDA digital repository (DOI: 10.15131/shef.data.4823248). en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Institute of Electrical and Electronics Engineers (IEEE) en
dc.rights © 2017 IEEE. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ en
dc.rights.uri http://creativecommons.org/licenses/by/3.0/ en
dc.subject Electric breakdown en
dc.subject Electric fields en
dc.subject Impact ionization en
dc.subject Mathematical model en
dc.subject Photonics en
dc.subject Silicon en
dc.subject Timing jitter en
dc.subject Avalanche breakdown en
dc.subject avalanche photodiodes en
dc.subject Jitter en
dc.title Avalanche breakdown timing statistics for silicon singlephoton avalanche diodes en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Alan Morrison, Engineering Faculty Office, University College Cork, Cork, Ireland. +353-21-490-3000 Email: a.morrison@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-01-09T12:08:29Z
dc.description.version Published Version en
dc.internal.rssid 421115529
dc.contributor.funder Science and Technology Facilities Council en
dc.contributor.funder Engineering and Physical Sciences Research Council en
dc.description.status Peer reviewed en
dc.identifier.journaltitle IEEE Journal of Selected Topics In Quantum Electronics en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress a.morrison@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/RCUK/STFC/ST/N000145/1/GB/Linear Geiger Mode Detector Technology for Time Resolved Spectral Measurements/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/K503149/1/GB/DTA - University of Sheffield/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/L505055/1/GB/DTA - University of Sheffield/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

© 2017 IEEE. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ Except where otherwise noted, this item's license is described as © 2017 IEEE. This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement