Citation:Conroy, M., Zubialevich, V. Z., Li, H., Petkov, N., O’Donoghue, S., Holmes, J. D. and Parbrook, P. J. (2016) 'Ultra-High-Density Arrays of Defect-Free AlN Nanorods: A “Space-Filling” Approach', ACS Nano, 10(2), pp. 1988-1994. doi:10.1021/acsnano.5b06062
Nanostructured semiconductors have a clear potential for improved optoelectronic devices, such as high-efficiency light-emitting diodes (LEDs). However, most arrays of semiconductor nanorods suffer from having relatively low densities (or “fill factors”) and a high degree of nonuniformity, especially when produced by self-organized growth. Ideally an array of nanorods for an optoelectronic emitter should have a fill factor close to 100%, with uniform rod diameter and height. In this article we present a “space-filling” approach for forming defect-free arrays of AlN nanorods, whereby the separation between each rod can be controlled to 5 nm due to a self-limiting process. These arrays of pyramidal-topped AlN nanorods formed over wafer-scale areas by metal organic chemical vapor deposition provide a defect-free semipolar top surface, for potential optoelectronic device applications with the highest reported fill factor at 98%.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement