Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films

Show simple item record

dc.contributor.author Faraz, Ahmad
dc.contributor.author Ricote, Jesus
dc.contributor.author Jimenez, Ricardo
dc.contributor.author Maity, Tuhin
dc.contributor.author Schmidt, Michael
dc.contributor.author Deepak, Nitin
dc.contributor.author Roy, Saibal
dc.contributor.author Pemble, Martyn E.
dc.contributor.author Keeney, Lynette
dc.date.accessioned 2018-04-03T13:29:40Z
dc.date.available 2018-04-03T13:29:40Z
dc.date.issued 2018-03-22
dc.identifier.citation Faraz, A., Ricote, J., Jimenez, R., Maity, T., Schmidt, M., Deepak, N., Roy, S., Pemble, M. E. and Keeney, L. (2018) 'Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films', Journal of Applied Physics, 123(12), 124101 (14pp). doi: 10.1063/1.5009986 en
dc.identifier.volume 123 en
dc.identifier.issued 12 en
dc.identifier.startpage 124101-1 en
dc.identifier.endpage 124101-14 en
dc.identifier.issn 0021-8979
dc.identifier.issn 1089-7550
dc.identifier.uri http://hdl.handle.net/10468/5723
dc.identifier.doi 10.1063/1.5009986
dc.description.abstract Here, we report the effect of A-site substitution of Tb at the expense of Bi on the ferroelectric and magnetic properties in m = 5 layered 2-D Aurivillius Bi6Ti3Fe2O18 thin films. The nominal stoichiometry of the prepared compound is Tb0.40Bi5.6Fe2Ti3O18, Tb0.90Bi5.1Fe2Ti3O18, and Bi6Ti3Fe2O18. Phase examination reveals that only 0.40 mol. % is successfully substituted forming Tb0.40Bi5.6Fe2Ti3O18 thin films. Lateral and vertical piezoresponse switching loops up to 200 °C reveal responses for Bi6Ti3Fe2O18, Tb substituted Tb0.40Bi5.6Fe2Ti3O18, and Tb0.90Bi5.1Fe2Ti3O18 thin films along the in-plane (±42.31 pm/V, 88 pm/V and ±134 pm/V, respectively) compared with the out-of-plane (±6.15 pm/V, 19.83 pm/V and ±37.52 pm/V, respectively). The macroscopic in-plane polarization loops reveal in-plane saturation (Ps) and remanence polarization (Pr) for Bi6Ti3Fe2O18 of ±26.16 μC/cm2 and ±22 μC/cm2, whereas, ±32.75 μC/cm2 and ±22.11 μC/cm2, ±40.30 μC/cm2 and ±28.5 μC/cm2 for Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 thin films, respectively. No ferromagnetic signatures were observed for Bi6Ti3Fe2O18 and Tb0.40Bi5.6Fe2Ti3O18. However, a weak response was observed for the Tb0.90Bi5.1Fe2Ti3O18 at 2 K. Microstructural analysis of Tb0.90Bi5.1Fe2Ti3O18 revealed that it contains 4 vol. % Fe:Tb rich areas forming FexTbyOz, which accounts for the observed magnetic moment. This study demonstrates the importance of thorough microstructural analysis when determining whether magnetic signatures can be reliably assigned to the single-phase system. We conclude that Tb0.40Bi5.6Fe2Ti3O18 and Tb0.90Bi5.1Fe2Ti3O18 samples are not multiferroic but demonstrate the potential for Fe-RAM applications. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri https://aip.scitation.org/doi/abs/10.1063/1.5009986
dc.rights © 2018, AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Applied Physics 2018 123:12 and may be found at https://aip.scitation.org/doi/abs/10.1063/1.5009986 en
dc.subject Bismuth compounds en
dc.subject Dielectric polarisation en
dc.subject Ferroelectric materials en
dc.subject Ferroelectric switching en
dc.subject Ferroelectric thin films en
dc.subject Magnetic moments en
dc.subject Magnetic thin films en
dc.subject Piezoelectric materials en
dc.subject Piezoelectric thin films en
dc.subject Piezoelectricity en
dc.subject Stoichiometry en
dc.subject Terbium compounds en
dc.subject Tit en
dc.title Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Lynette Keeney, Tyndall Photonics, University College Cork, Cork, Ireland. +353-21-490-3000 Email: lynette.keeney@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 12 months after publication by request of the publisher. en
dc.check.date 2019-03-22
dc.date.updated 2018-04-03T12:04:45Z
dc.description.version Published Version en
dc.internal.rssid 432431957
dc.contributor.funder Seventh Framework Programme en
dc.contributor.funder FP7 People: Marie-Curie Actions en
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Royal Society en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Applied Physics en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress lynette.keeney@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/EC/FP7::SP3::PEOPLE/290158/EU/NANOELECTROMECHANICAL MOTION IN FUNCTIONAL MATERIALS/NANOMOTION en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Strategic Research Cluster/07/SRC/I1172/IE/SRC FORME: Functional Oxides and Related Materials for Electronics/ en
dc.relation.project Higher Education Authority ((HEA) PRTLI 3, and the HEA PRTLI4 Project INSPIRE); Royal Society and Science Foundation Ireland (University Research Fellowship UF 140263) en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement