Metal-semimetal Schottky diode relying on quantum confinement

Thumbnail Image
5135.pdf(842.73 KB)
Accepted version
Gity, Farzan
Ansari, Lida
König, Christian
Verni, Giuseppe Alessio
Holmes, Justin D.
Long, Brenda
Lanius, Martin
Schüffelgen, Peter
Mussler, Gregor
Grützmacher, Detlev
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue
Quantum confinement in a semimetal thin film such as bismuth (Bi) can lead to a semimetal-to-semiconductor transition which allows for the use of semimetals as semiconductors when patterned at nanoscale lengths. Bi native oxide on Bi thin film grown by molecular beam epitaxy (MBE) is investigated using X-ray photoelectron spectroscopy (XPS) to measure the elemental composition of the oxide. Also, an in-situ argon plasma etch step is developed allowing for the direct coating of the surface of thin Bi films by a metal contact to form a Schottky junction. Model structures of rhombohedral [111] and [110] bismuth thin films are found from density functional theory (DFT) calculations. The electronic structure of the model thin films is investigated using a GW correction and the formation of an energy band gap due to quantum confinement is found. Electrical characterization of the fabricated Bi-metal Schottky diode confirms a band gap opening in Bi thin film for a film thickness of approximately 5 nm consistent with the theoretical calculations.
Bismuth , Native oxide , Quantum confinement , Schottky junction , Semimetal , XPS
Gity, F., Ansari, L., König, C., Verni, G. A., Holmes, J., Long, B., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D. and Greer, J. C. (2018) 'Metal-semimetal Schottky diode relying on quantum confinement', Microelectronic Engineering, In Press, doi: 10.1016/j.mee.2018.03.022