Metal-semimetal Schottky diode relying on quantum confinement

Show simple item record

dc.contributor.author Gity, Farzan
dc.contributor.author Ansari, Lida
dc.contributor.author König, Christian
dc.contributor.author Verni, Giuseppe Alessio
dc.contributor.author Holmes, Justin D.
dc.contributor.author Long, Brenda
dc.contributor.author Lanius, Martin
dc.contributor.author Schüffelgen, Peter
dc.contributor.author Mussler, Gregor
dc.contributor.author Grützmacher, Detlev
dc.contributor.author Greer, James C.
dc.date.accessioned 2018-04-03T14:48:03Z
dc.date.available 2018-04-03T14:48:03Z
dc.date.issued 2018-03-21
dc.identifier.citation Gity, F., Ansari, L., König, C., Verni, G. A., Holmes, J., Long, B., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D. and Greer, J. C. (2018) 'Metal-semimetal Schottky diode relying on quantum confinement', Microelectronic Engineering, In Press, doi: 10.1016/j.mee.2018.03.022 en
dc.identifier.startpage 1 en
dc.identifier.endpage 7 en
dc.identifier.issn 0167-9317
dc.identifier.uri http://hdl.handle.net/10468/5725
dc.identifier.doi 10.1016/j.mee.2018.03.022
dc.description.abstract Quantum confinement in a semimetal thin film such as bismuth (Bi) can lead to a semimetal-to-semiconductor transition which allows for the use of semimetals as semiconductors when patterned at nanoscale lengths. Bi native oxide on Bi thin film grown by molecular beam epitaxy (MBE) is investigated using X-ray photoelectron spectroscopy (XPS) to measure the elemental composition of the oxide. Also, an in-situ argon plasma etch step is developed allowing for the direct coating of the surface of thin Bi films by a metal contact to form a Schottky junction. Model structures of rhombohedral [111] and [110] bismuth thin films are found from density functional theory (DFT) calculations. The electronic structure of the model thin films is investigated using a GW correction and the formation of an energy band gap due to quantum confinement is found. Electrical characterization of the fabricated Bi-metal Schottky diode confirms a band gap opening in Bi thin film for a film thickness of approximately 5 nm consistent with the theoretical calculations. en
dc.description.sponsorship Irish Research Council (Award No. GOIPD/2016/643) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Elsevier en
dc.relation.uri http://www.sciencedirect.com/science/article/pii/S0167931718301369
dc.rights © 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. en
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/ en
dc.subject Bismuth en
dc.subject Native oxide en
dc.subject Quantum confinement en
dc.subject Schottky junction en
dc.subject Semimetal en
dc.subject XPS en
dc.title Metal-semimetal Schottky diode relying on quantum confinement en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Lida Ansari, Tyndall National Institute, University College Cork, University College Cork, Cork, Ireland. +353-21-490-3000 Email: lida.ansari@tyndall.ie en
dc.internal.availability Full text available en
dc.check.info Access to this article is restricted until 24 months after publication by request of the publisher. en
dc.check.date 2020-03-21
dc.date.updated 2018-04-03T14:39:47Z
dc.description.version Accepted Version en
dc.internal.rssid 432431967
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Irish Research Council en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Microelectronic Engineering en
dc.internal.copyrightchecked No !!CORA!! en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress lida.ansari@tyndall.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/ en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

© 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. Except where otherwise noted, this item's license is described as © 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement