Reinventing solid state electronics: harnessing quantum confinement in bismuth thin films

Show simple item record

dc.contributor.author Gity, Farzan
dc.contributor.author Ansari, Lida
dc.contributor.author Lanius, Martin
dc.contributor.author Schüffelgen, Peter
dc.contributor.author Mussler, Gregor
dc.contributor.author Grützmacher, Detlev
dc.contributor.author Greer, James C.
dc.date.accessioned 2018-04-04T09:19:09Z
dc.date.available 2018-04-04T09:19:09Z
dc.date.issued 2017-03-03
dc.identifier.citation Gity, F., Ansari, L., Lanius, M., Schüffelgen, P., Mussler, G., Grützmacher, D. and Greer, J. C. (2017) 'Reinventing solid state electronics: harnessing quantum confinement in bismuth thin films', Applied Physics Letters, 110(9), 093111 (5pp). doi:10.1063/1.4977431 en
dc.identifier.volume 110 en
dc.identifier.issued 9 en
dc.identifier.startpage 1 en
dc.identifier.endpage 5 en
dc.identifier.issn 0003-6951
dc.identifier.uri http://hdl.handle.net/10468/5728
dc.identifier.doi 10.1063/1.4977431
dc.description.abstract Solid state electronics relies on the intentional introduction of impurity atoms or dopants into a semiconductor crystal and/or the formation of junctions between different materials (heterojunctions) to create rectifiers, potential barriers, and conducting pathways. With these building blocks, switching and amplification of electrical currents and voltages are achieved. As miniaturisation continues to ultra-scaled transistors with critical dimensions on the order of ten atomic lengths, the concept of doping to form junctions fails and forming heterojunctions becomes extremely difficult. Here, it is shown that it is not needed to introduce dopant atoms nor is a heterojunction required to achieve the fundamental electronic function of current rectification. Ideal diode behavior or rectification is achieved solely by manipulation of quantum confinement using approximately 2 nm thick films consisting of a single atomic element, the semimetal bismuth. Crucially for nanoelectronics, this approach enables room temperature operation. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher AIP Publishing en
dc.relation.uri ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-110-027709
dc.rights © 2017, the Authors. Published by AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the authors and AIP Publishing. The following article appeared in F. Gity et al., Applied Physics Letters, 110(9), 093111 (5pp) and may be found at http://dx.doi.org/10.1063/1.4977431 en
dc.subject Bismuth en
dc.subject Quantum confinement en
dc.subject Room temperature en
dc.title Reinventing solid state electronics: harnessing quantum confinement in bismuth thin films en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother James Greer, Tyndall Graduate Studies, University College Cork, Cork, Ireland. +353-21-490-3000 Email: jamesgreer@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-03-29T10:52:22Z
dc.description.version Published Version en
dc.internal.rssid 431799747
dc.contributor.funder Science Foundation Ireland en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Applied Physics Letters en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress JamesGreer@ucc.ie en
dc.identifier.articleid 093111
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Investigator Programme/13/IA/1956/IE/SMALL: Semi-Metal ALL-in-One Technologies/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement