Growth of crystalline copper silicide nanowires in high yield within a high boiling point solvent system

Show simple item record

dc.contributor.author Geaney, Hugh
dc.contributor.author Dickinson, Calum
dc.contributor.author O'Dwyer, Colm
dc.contributor.author Mullane, Emma
dc.contributor.author Singh, Ajay
dc.contributor.author Ryan, Kevin M.
dc.date.accessioned 2018-06-12T14:16:30Z
dc.date.available 2018-06-12T14:16:30Z
dc.date.issued 2012-10-29
dc.identifier.citation Geaney, H., Dickinson, C., O’Dwyer, C., Mullane, E., Singh, A. and Ryan, K. M. (2012) 'Growth of Crystalline Copper Silicide Nanowires in High Yield within a High Boiling Point Solvent System', Chemistry of Materials, 24(22), pp. 4319-4325. doi: 10.1021/cm302066n en
dc.identifier.volume 24 en
dc.identifier.startpage 4319 en
dc.identifier.endpage 4325 en
dc.identifier.issn 0897-4756
dc.identifier.uri http://hdl.handle.net/10468/6283
dc.identifier.doi 10.1021/cm302066n
dc.description.abstract Here, we report the formation of high density arrays of Cu15Si4 nanowires using a high boiling point organic solvent based method. The reactions were carried out using Cu foil substrates as the Cu source with nanowire growth dependent upon the prior formation of Cu15Si4 crystallites on the surface. The method shows that simple Si delivery to metal foil can be used to grow high densities of silicide nanowires with a tight diameter spread at reaction temperatures of 460 °C. The nanowires were characterized by high-resolution transmission electron microscopy (HRTEM), high-resolution scanning electron microscopy (HRSEM), and X-ray photoelectron spectroscopy (XPS), and electrical analysis showed that they possess low resistivities. en
dc.description.sponsorship Higher Education Authority (INSPIRE programme, funded by the Irish Government’s Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007−2013); Irish Research Council for Science, Engineering and Technology (IRCSET embark initiative) en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher American Chemical Society (ACS) en
dc.relation.uri https://pubs.acs.org/doi/abs/10.1021/cm302066n
dc.rights © 2012 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/cm302066n en
dc.subject Copper en
dc.subject High boiling point solvent synthesis en
dc.subject Silicide nanowires en
dc.subject X-ray photoelectron spectroscopy en
dc.title Growth of crystalline copper silicide nanowires in high yield within a high boiling point solvent system en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Colm O'Dwyer, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: c.odwyer@ucc.ie en
dc.internal.availability Full text available en
dc.date.updated 2018-06-11T21:39:56Z
dc.description.version Accepted Version en
dc.internal.rssid 182546781
dc.contributor.funder Science Foundation Ireland en
dc.contributor.funder Higher Education Authority en
dc.contributor.funder Irish Research Council for Science, Engineering and Technology en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Chemistry of Materials en
dc.internal.copyrightchecked Yes en
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress c.odwyer@ucc.ie en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/06/IN.1/I85/IE/Electric Field Assisted Assembly of Semiconductor Nanorod Superlattices On-Chip/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Principal Investigator Programme (PI)/11/PI/1148/IE/Growth, Oriented Attachment and Large scale Vertical Assembly of Ternary and Quaternary Semiconductor Nanorods for Low Cost Photovoltaics/ en
dc.relation.project info:eu-repo/grantAgreement/SFI/SFI Strategic Research Cluster/07/SRC/B1160/IE/SRC SEC: Advanced Biomimetic Materials for Solar Energy Conversion/ en


Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement