Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve
Bottacini, Francesca; Morrissey, Ruth; Roberts, Richard John; James, Kieran; van Breen, Justin; Egan, Muireann; Lambert, Jolanda; van Limpt, Kees; Knol, Jan; O'Connell Motherway, Mary; van Sinderen, Douwe
Date:
2018
Copyright:
© 2017, the Authors. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Citation:
Bottacini, F., Morrissey, R., Roberts, Richard J., James, K., van Breen, J., Egan, M., Lambert, J., van Limpt, K., Knol, J., O'Connell Motherway, M. and van Sinderen, D. (2018) 'Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve', Nucleic Acids Research, 46(4), pp. 1860-1877. doi: 10.1093/nar/gkx1289
Abstract:
Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastrointestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species.
Show full item record