Analysis of building performance data

No Thumbnail Available
Hoerster, Stephan Carlo
Journal Title
Journal ISSN
Volume Title
University College Cork
Published Version
Research Projects
Organizational Units
Journal Issue
In recent years, the global trend for digitalisation has also reached buildings and facility management. Due to the roll out of smart meters and the retrofitting of buildings with meters and sensors, the amount of data available for a single building has increased significantly. In addition to data sets collected by measurement devices, Building Information Modelling has recently seen a strong incline. By maintaining a building model through the whole building life-cycle, the model becomes rich of information describing all major aspects of a building. This work aims to combine these data sources to gain further valuable information from data analysis. Better knowledge of the building’s behaviour due to high quality data available leads to more efficient building operations. Eventually, this may result in a reduction of energy use and therefore less operational costs. In this thesis a concept for holistic data acquisition from smart meters and a methodology for the integration of further meters in the measurement concept are introduced and validated. Secondly, this thesis presents a novel algorithm designed for cleansing and interpolation of faulty data. Descriptive data is extracted from an open meta data model for buildings which is utilised to further enrich the metered data. Additionally, this thesis presents a methodology for how to design and manage all information in a unified Data Warehouse schema. This Data Warehouse, which has been developed, maintains compatibility with an open meta data model by adopting the model’s specification into its data schema. It features the application of building specific Key Performance Indicators (KPI) to measure building performance. In addition a clustering algorithm, based on machine learning technology, is developed to identify behavioural patterns of buildings and their frequency of occurrence. All methodologies introduced in this work are evaluated through installations and data from three pilot buildings. The pilot buildings were selected to be of diverse types to prove the generic applicability of the above concepts. The outcome of this work successfully demonstrates that the combination of data sources available for buildings enable advanced data analysis. This largely increases the understanding of buildings and their behavioural patterns. A more efficient building operation and a reduction of energy usage can be achieved with this knowledge.
BIM , IFC , Clustering , Metering , Monitoring , Data warehouse
Hoerster, S. C. 2018. Analysis of building performance data. PhD Thesis, University College Cork.