Control growth orientation of semipolar GaN layers grown on 3C-SiC/(001) Si

Loading...
Thumbnail Image
Files
Dinh_Cora.pdf(10.38 MB)
Accepted Version
Date
2018-08-23
Authors
Dinh, Duc V.
Parbrook, Peter J.
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier B.V.
Research Projects
Organizational Units
Journal Issue
Abstract
Heteroepitaxial growth of GaN buffer layers on 3C-SiC/(001) Si substrates (4°-miscut towards [110]) by metalorganic vapour phase epitaxy has been investigated. High-temperature grown AlxGa1-xN/AlN interlayers were employed to control GaN surface orientations. Semipolar GaN layers with (101¯1), (202¯3) and (101¯2) surface orientations were achieved, as confirmed by X-ray diffraction. Due to the substrate miscut, the growth of (101¯1) layers was twinned along [11¯0]3C-SiC/Si and [1¯10]3C-SiC/Si while the growth of (202¯3) and (101¯2) layers was only along [110]3C-SiC/Si. The (101¯1) layers have rough surface morphology while the (202¯3) and (101¯2) layers have mirror-like smooth surface. For all samples with various surface orientations, different photoluminescence peak emission energies were observed at ∼3.45 eV, 3.78 eV and 3.27 eV at 10 K. These emissions are attributed to the near-band edge of hexagonal GaN, basal-plane stacking faults and partial dislocations, respectively. The dominant luminescence intensity of stacking faults indicates their high density in the GaN layers.
Description
Keywords
Metalorganic vapour phase epitaxy , Nitrides , GaN , Semiconducting aluminium compounds
Citation
Dinh, D. V. and Parbrook, P. J. (2018) 'Control growth orientation of semipolar GaN layers grown on 3C-SiC/(001) Si', Journal of Crystal Growth, 501, pp. 34-37. doi:10.1016/j.jcrysgro.2018.08.021