Unequivocal experimental evidence for a unified lithium salt-free Wittig reaction mechanism for all phosphonium ylide types: reactions with β-heteroatom-substituted aldehydes are consistently selective for cis-oxaphosphetane-derived products

No Thumbnail Available
Date
2012-05-07
Authors
Byrne, Peter A.
Gilheany, Declan G.
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society, ACS
Published Version
Research Projects
Organizational Units
Journal Issue
Abstract
The true course of the lithium salt-free Wittig reaction has long been a contentious issue in organic chemistry. Herein we report an experimental effect that is common to the Wittig reactions of all of the three major phosphonium ylide classes (non-stabilized, semi-stabilized, and stabilized): there is consistently increased selectivity for cis-oxaphosphetane and its derived products (Z-alkene and erythro-β-hydroxyphosphonium salt) in reactions involving aldehydes bearing heteroatom substituents in the β-position. The effect operates with both benzaldehydes and aliphatic aldehydes and is shown not to operate in the absence of the heteroatom substituent on the aldehyde. The discovery of an effect that is common to reactions of all ylide types strongly argues for the operation of a common mechanism in all Li salt-free Wittig reactions. In addition, the results are shown to be most easily explained by the [2+2] cycloaddition mechanism proposed by Vedejs and co-workers as supplemented by Aggarwal, Harvey, and co-workers, thus providing strong confirmatory evidence in support of that mechanism. Notably, a cooperative effect of ortho-substituents in the case of semi-stabilized ylides is confirmed and is accommodated by the cycloaddition mechanism. The effect is also shown to operate in reactions of triphenylphosphine-derived ylides and has previously been observed for reactions under aqueous conditions, thus for the first time providing evidence that kinetic control is in operation in both of these cases.
Description
Keywords
Aldehydes , Chemical reactions , Olefins , Organic compounds , Aliphatic aldehydes , Aqueous condition , Cooperative effects , Derived products , Erythro , Experimental evidence , Heteroatom substituents , Kinetic control , Organic Chemistry , Wittig reaction
Citation
Byrne, P. A. and Gilheany, D. G. (2012) 'Unequivocal Experimental Evidence for a Unified Lithium Salt-Free Wittig Reaction Mechanism for All Phosphonium Ylide Types: Reactions with β-Heteroatom-Substituted Aldehydes Are Consistently Selective for cis-Oxaphosphetane-Derived Products', Journal of the American Chemical Society, 134(22), pp. 9225-9239. doi: 10.1021/ja300943z
Copyright
© 2012 American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/ja300943z