Citation:Wang, Y., Noor-A-Rahim, M., Gunawan, E., Guan, Y. L. and Poh, C. L. (2019) 'Construction of bio-constrained code for DNA data storage', IEEE Communications Letters. doi: 10.1109/LCOMM.2019.2912572
With extremely high density and durable preservation, DNA data storage has become one of the most cutting-edge techniques for long-term data storage. Similar to traditional storage which impose restrictions on the form of encoded data, data stored in DNA storage systems are also subject to two biochemical constraints, i.e., maximum homopolymer run limit and balanced GC content limit. Previous studies used successive process to satisfy these two constraints. As a result, the process suffers low efficiency and high complexity. In this paper, we propose a novel content-balanced run-length limited (C-RLL) code with an efficient code construction method, which generates short DNA sequences that satisfy both constraints at one time. Besides, we develop an encoding method to map binary data into long DNA sequences for DNA data storage, which ensures both local and global stability in terms of satisfying the biochemical constraints. The proposed encoding method has high effective code rate of 1.917 bits per nucleotide and low coding complexity.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement