The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
dc.contributor.author | Pérez-Torres, Rafael | |
dc.contributor.author | Torres-Huitzil, César | |
dc.contributor.author | Galeana-Zapién, Hiram | |
dc.date.accessioned | 2019-10-23T04:58:54Z | |
dc.date.available | 2019-10-23T04:58:54Z | |
dc.date.issued | 2019-09-12 | |
dc.identifier.citation | Pérez-Torres, R., Torres-Huitzil, C. and Galeana-Zapién, H. (2019) 'A Spatio-Temporal Approach to Individual Mobility Modeling in On-Device Cognitive Computing Platforms', Sensors, 19(18), 3949. (20pp.) DOI: 10.3390/s19183949 | en |
dc.identifier.volume | 19 | en |
dc.identifier.issued | 18 | en |
dc.identifier.startpage | 1 | en |
dc.identifier.endpage | 20 | en |
dc.identifier.uri | http://hdl.handle.net/10468/8839 | |
dc.identifier.doi | 10.3390/s19183949 | en |
dc.description.abstract | The increased availability of GPS-enabled devices makes possible to collect location data for mining purposes and to develop mobility-based services (MBS). For most of the MBSs, determining interesting locations and frequent Points of Interest (POIs) is of paramount importance to study the semantic of places visited by an individual and the mobility patterns as a spatio-temporal phenomenon. In this paper, we propose a novel approach that uses mobility-based services for on-device and individual-centered mobility understanding. Unlike existing approaches that use crowd data for cloud-assisted POI extraction, the proposed solution autonomously detects POIs and mobility events to incrementally construct a cognitive map (spatio-temporal model) of individual mobility suitable to constrained mobile platforms. In particular, we focus on detecting POIs and enter-exits events as the key to derive statistical properties for characterizing the dynamics of an individual’s mobility. We show that the proposed spatio-temporal map effectively extracts core features from the user-POI interaction that are relevant for analytics such as mobility prediction. We also demonstrate how the obtained spatio-temporal model can be exploited to assess the relevance of daily mobility routines. This novel cognitive and on-line mobility modeling contributes toward the distributed intelligence of IoT connected devices without strongly compromising energy. | en |
dc.description.sponsorship | Ministério da Educação (PRODEP); CONACYT (Mexico, 237417) | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | en |
dc.publisher | MDPI | en |
dc.relation.uri | https://www.mdpi.com/1424-8220/19/18/3949/htm | |
dc.rights | ©2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en |
dc.subject | Human mobility | en |
dc.subject | Trajectory | en |
dc.subject | POI | en |
dc.subject | Cognitive computing | en |
dc.subject | Smartphone | en |
dc.title | A spatio-temporal approach to individual mobility modeling in on-device cognitive computing platforms | en |
dc.type | Article (peer-reviewed) | en |
dc.internal.authorcontactother | Rafael Pérez-Torres, School of Computer Science & Information Technology, University College Cork, Cork, Ireland. +353-21-490-3000 Email:rafael.pereztorres@ucc.ie | en |
dc.internal.availability | Full text available | en |
dc.description.version | Published Version | en |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología![]() |
en |
dc.contributor.funder | Ministério da Educação![]() |
en |
dc.description.status | Peer reviewed | en |
dc.identifier.journaltitle | Sensors | en |
dc.internal.IRISemailaddress | rafael.pereztorres@ucc.ie | en |
dc.identifier.articleid | 3949 | en |
dc.relation.project | info:eu-repo/grantAgreement/EC/FP7::SP3::PEOPLE/237417/EU/Evolving Phenotypic plasticity and Plant Invasiveness: An inter-disciplinary approach/EVOPLASTINV![]() |
en |
dc.identifier.eissn | 1424-8220 |