Band gap modulation in zirconium-based metal-organic frameworks by defect engineering

Show simple item record Taddei, Marco Schukraft, Giulia M. Warwick, Michael E. A. Tiana, Davide McPherson, Matthew J. Jones, Daniel R. Petit, Camille 2019-11-13T12:39:24Z 2019-11-13T12:39:24Z 2019-08-19
dc.identifier.citation Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R. and Petit, C. (2019) 'Band gap modulation in zirconium-based metal-organic frameworks by defect engineering', Journal of Materials Chemistry A, 7(41), pp. 23781-23786. doi: 10.1039/C9TA05216J en
dc.identifier.volume 7 en
dc.identifier.issued 41 en
dc.identifier.startpage 23781 en
dc.identifier.endpage 23786 en
dc.identifier.issn 2050-7488
dc.identifier.doi 10.1039/C9TA05216J en
dc.description.abstract We report a defect-engineering approach to modulate the band gap of zirconium-based metal–organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1–3.3 eV range. First principle calculations suggest that shrinking of the band gap is likely due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO2 reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species. en
dc.format.mimetype application/pdf en
dc.language.iso en en
dc.publisher Royal Society of Chemistry en
dc.rights © 2019, the Authors. Journal of Materials Chemistry A is © the Royal Society of Chemistry. en
dc.subject Band gap en
dc.subject Zirconium en
dc.subject UiO-66 en
dc.subject Amino-functionalised benzoic acids en
dc.subject MOF en
dc.subject Defect engineering en
dc.subject Valence band energy en
dc.subject Light-absorbing monocarboxylates en
dc.subject Defect-engineered MOFs en
dc.title Band gap modulation in zirconium-based metal-organic frameworks by defect engineering en
dc.type Article (peer-reviewed) en
dc.internal.authorcontactother Davide Tiana, Chemistry, University College Cork, Cork, Ireland. +353-21-490-3000 Email: en
dc.internal.availability Full text available en Access to this article is restricted until 12 months after publication by request of the publisher. en 2020-08-19 2019-11-13T12:18:27Z
dc.description.version Accepted Version en
dc.internal.rssid 499775294
dc.contributor.funder Horizon 2020 en
dc.contributor.funder Engineering and Physical Sciences Research Council en
dc.description.status Peer reviewed en
dc.identifier.journaltitle Journal of Materials Chemistry A en
dc.internal.copyrightchecked Yes
dc.internal.licenseacceptance Yes en
dc.internal.IRISemailaddress en
dc.relation.project info:eu-repo/grantAgreement/EC/H2020::MSCA-COFUND-FP/663830/EU/Strengthening International Research Capacity in Wales/SIRCIW en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/R01910X/1/GB/Defect-engineered metal-organic frameworks for carbon dioxide capture/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/L015277/1/GB/EPSRC Centre for Doctoral Training in the Advanced Characterisation of Materials/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/P020267/1/GB/EPCC Tier 2 HPC Service/ en
dc.relation.project info:eu-repo/grantAgreement/RCUK/EPSRC/EP/M028267/1/GB/Advanced Materials equipment refresh/ en
dc.identifier.eissn 2050-7496

Files in this item

This item appears in the following Collection(s)

Show simple item record

This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement