Band gap modulation in zirconium-based metal-organic frameworks by defect engineering

dc.contributor.authorTaddei, Marco
dc.contributor.authorSchukraft, Giulia M.
dc.contributor.authorWarwick, Michael E. A.
dc.contributor.authorTiana, Davide
dc.contributor.authorMcPherson, Matthew J.
dc.contributor.authorJones, Daniel R.
dc.contributor.authorPetit, Camille
dc.contributor.funderHorizon 2020en
dc.contributor.funderEngineering and Physical Sciences Research Councilen
dc.date.accessioned2019-11-13T12:39:24Z
dc.date.available2019-11-13T12:39:24Z
dc.date.issued2019-08-19
dc.date.updated2019-11-13T12:18:27Z
dc.description.abstractWe report a defect-engineering approach to modulate the band gap of zirconium-based metal–organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1–3.3 eV range. First principle calculations suggest that shrinking of the band gap is likely due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO2 reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.en
dc.description.statusPeer revieweden
dc.description.versionAccepted Versionen
dc.format.mimetypeapplication/pdfen
dc.identifier.citationTaddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R. and Petit, C. (2019) 'Band gap modulation in zirconium-based metal-organic frameworks by defect engineering', Journal of Materials Chemistry A, 7(41), pp. 23781-23786. doi: 10.1039/C9TA05216Jen
dc.identifier.doi10.1039/C9TA05216Jen
dc.identifier.eissn2050-7496
dc.identifier.endpage23786en
dc.identifier.issn2050-7488
dc.identifier.issued41en
dc.identifier.journaltitleJournal of Materials Chemistry Aen
dc.identifier.startpage23781en
dc.identifier.urihttps://hdl.handle.net/10468/8999
dc.identifier.volume7en
dc.language.isoenen
dc.publisherRoyal Society of Chemistryen
dc.relation.projectinfo:eu-repo/grantAgreement/EC/H2020::MSCA-COFUND-FP/663830/EU/Strengthening International Research Capacity in Wales/SIRCIWen
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/R01910X/1/GB/Defect-engineered metal-organic frameworks for carbon dioxide capture/en
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/L015277/1/GB/EPSRC Centre for Doctoral Training in the Advanced Characterisation of Materials/en
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/P020267/1/GB/EPCC Tier 2 HPC Service/en
dc.relation.projectinfo:eu-repo/grantAgreement/RCUK/EPSRC/EP/M028267/1/GB/Advanced Materials equipment refresh/en
dc.rights© 2019, the Authors. Journal of Materials Chemistry A is © the Royal Society of Chemistry.en
dc.subjectBand gapen
dc.subjectZirconiumen
dc.subjectUiO-66en
dc.subjectAmino-functionalised benzoic acidsen
dc.subjectMOFen
dc.subjectDefect engineeringen
dc.subjectValence band energyen
dc.subjectLight-absorbing monocarboxylatesen
dc.subjectDefect-engineered MOFsen
dc.titleBand gap modulation in zirconium-based metal-organic frameworks by defect engineeringen
dc.typeArticle (peer-reviewed)en
Files
Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Manuscript_Taddei_Rev_ChemRxiv.pdf
Size:
485.69 KB
Format:
Adobe Portable Document Format
Description:
Accepted Version
Loading...
Thumbnail Image
Name:
c9ta05216j1.pdf
Size:
8.99 MB
Format:
Adobe Portable Document Format
Description:
Supplementary Information
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.71 KB
Format:
Item-specific license agreed upon to submission
Description: