Band gap modulation in zirconium-based metal-organic frameworks by defect engineering

Thumbnail Image
c9ta05216j1.pdf(8.99 MB)
Supplementary Information
Taddei, Marco
Schukraft, Giulia M.
Warwick, Michael E. A.
Tiana, Davide
McPherson, Matthew J.
Jones, Daniel R.
Petit, Camille
Journal Title
Journal ISSN
Volume Title
Royal Society of Chemistry
Published Version
Research Projects
Organizational Units
Journal Issue
We report a defect-engineering approach to modulate the band gap of zirconium-based metal–organic framework UiO-66, enabled by grafting of a range of amino-functionalised benzoic acids at defective sites. Defect engineered MOFs were obtained by both post-synthetic exchange and modulated synthesis, featuring band gap in the 4.1–3.3 eV range. First principle calculations suggest that shrinking of the band gap is likely due to an upward shift of the valence band energy, as a result of the presence of light-absorbing monocarboxylates. The photocatalytic properties of defect-engineered MOFs towards CO2 reduction to CO in the gas phase and degradation of Rhodamine B in water were tested, observing improved activity in both cases, in comparison to a defective UiO-66 bearing formic acid as the defect-compensating species.
Band gap , Zirconium , UiO-66 , Amino-functionalised benzoic acids , MOF , Defect engineering , Valence band energy , Light-absorbing monocarboxylates , Defect-engineered MOFs
Taddei, M., Schukraft, G. M., Warwick, M. E. A., Tiana, D., McPherson, M. J., Jones, D. R. and Petit, C. (2019) 'Band gap modulation in zirconium-based metal-organic frameworks by defect engineering', Journal of Materials Chemistry A, 7(41), pp. 23781-23786. doi: 10.1039/C9TA05216J
© 2019, the Authors. Journal of Materials Chemistry A is © the Royal Society of Chemistry.