Accommodating curvature in a highly ordered functionalized metal oxide nanofiber: synthesis, characterization and multi-scale modeling of layered nanosheets
Accommodating curvature in a highly ordered functionalized metal oxide nanofiber: synthesis, characterization and multi-scale modeling of layered nanosheets
Full text restriction information:Access to the full text of this publication is restricted until 12 months after publication by request of the publisher.
Citation:O'Dwyer, C., Gannon, G., McNulty, D., Buckley, D. N., Thompson, D. (2012) 'Accommodating curvature in a highly ordered functionalized metal oxide nanofiber: synthesis, characterization and multi-scale modeling of layered nanosheets'. Chemistry of Materials, 24, 3981−3992.
A key element in the rational design of hybrid organic-inorganic nanostructures, is control of surfactant packing and adsorption onto the inorganic phase in crystal growth and assembly. In layered single crystal nanofibers and bilayered 2D nanosheets of vanadium oxide, we show how the chemisorption of preferred densities of surfactant molecules can direct formation of ordered, curved layers. The atom-scale features of the structures are described using molecular dynamics simulations that quantify surfactant packing effects and confirm the preference for a density of 5 dodecanethiol molecules per 8 vanadium attachment sites in the synthesised structures. This assembly maintains a remarkably well ordered interlayer spacing, even when curved. The assemblies of interdigitated organic bilayers on V2O5 are shown to be sufficiently flexible to tolerate curvature while maintaining a constant interlayer distance without rupture, delamination or cleavage. The accommodation of curvature and invariant structural integrity points to a beneficial role for oxide-directed organic film packing effects in layered architectures such as stacked nanofibers and hybrid 2D nanosheet systems.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement