JavaScript is disabled for your browser. Some features of this site may not work without it.
The submission of new items to CORA is currently unavailable due to a repository upgrade. For further information, please contact cora@ucc.ie. Thank you for your understanding.
Citation:Schmidt-Martin D, Crosbie O, Kenny-Walsh E, Fanning LJ (2012) 'Hepatitis C quasispecies adaptation in the setting of a variable fidelity polymerase'. Journal of Virus Adaptation and Treatment, 4 (1):43-50. doi: 10.2147/VAAT.S31785
Hepatitis C (HCV) is a virus characterized by an RNA-dependent RNA polymerase that lacks a proofreading mechanism and, as a result, generates a quasispecies. There is emerging evidence that this RNA-dependent RNA polymerase may in fact have variable fidelity. Here, we review the relevant concepts, including fitness landscapes, clonal interference, robustness, selection, adaptation, mutation rates, and their optimization, and provide a unique interpretation of a number of relevant theoretical models, evolving the theory of replicative homeostasis in light of their findings. We suggest that a variable fidelity polymerase can find its own optimal mutation rate, which is governed by the sequence itself and certain population dynamics. We propose that this concept can explain features of viral kinetics and clearance, both spontaneously and following treatment of chronic HCV. We point to evidence that supports this theory and explain how it refines replicative homeostasis and conclude by discussing particular areas of potential research that might augment our understanding of viral host interactions at an individual cellular level.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement