Full text restriction information:Access to this article is restricted until 12 months after publication by request of the publisher.
Restriction lift date:2020-12-24
Citation:Lu, W., Maidannyk, V., Kelly, A. L. and Miao, S. (2020) 'Fabrication and characterization of highly re-dispersible dry emulsions', Food Hydrocolloids, 102, 105617 (9 pp). doi: 10.1016/j.foodhyd.2019.105617
Highly re-dispersible dry emulsions were obtained through drying konjac glucomannan (KGM) or monoglyceride (MG) structured O/W emulsions. Emulsion powders showed different morphologies, particle size and surface microstructures, depending on the drying method (spray/freeze-drying), and the emulsion compositions. The introduction of a low level of KGM (0.15 wt%) and MG (1 wt%) significantly reduced the level of maltodextrin as wall material. All powdered emulsions showed rapid re-hydration in water. Compared with original emulsions before drying, re-constituted emulsions from spray-dried powders showed slightly increased mean droplet size while that from freeze-dried ones showed slightly decreased mean droplet size. KGM significantly decreased the initial viscosity (p < 0.05) but increased the creaming stability (p < 0.05) of re-constituted emulsions. Measurement of β-carotene content in re-constituted oil droplets fractions indicated that emulsion powders have good re-dispersibility in water (>93% in average). The findings in this study make it possible to obtain emulsion powders and their reconstitutions with desired properties by structuring the original emulsions before drying, and confirmed the possibility of KGM and MG in producing low-cost emulsion powders and the potential of these dry emulsions as novel solid delivery carriers for lipophilic components.
This website uses cookies. By using this website, you consent to the use of cookies in accordance with the UCC Privacy and Cookies Statement. For more information about cookies and how you can disable them, visit our Privacy and Cookies statement