Access to this article is restricted until 12 months after publication by request of the publisher.. Restriction lift date: 2021-06-10
Chase dosing of lipid formulations to enhance oral bioavailability of nilotinib in rats
Loading...
Date
2020-06-10
Authors
Koehl, Niklas J.
Holm, René
Kuentz, Martin
Griffin, Brendan T.
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature Switzerland AG
Published Version
Abstract
Purpose: Lipid-based formulations (LBF) have shown oral bioavailability enhancement of lipophilic drugs, but not necessarily in the case of hydrophobic drugs. This study explored the potential of lipid vehicles to improve the bioavailability of the hydrophobic drug nilotinib comparing a chase dosing approach and lipid suspensions. Methods: Nilotinib in vivo bioavailability in rats was determined after administering an aqueous suspension chase dosed with blank olive oil, Captex 1000, Peceol or Capmul MCM, respectively. Absolute bioavailability was determined (relative to an intravenous formulation). Pharmacokinetic parameters were compared to lipid suspensions. Results: Compared to the lipid suspensions, the chase dosed lipids showed a 2- to 7-fold higher bioavailability. Both long chain chase dosed excipients also significantly increased the bioavailability up to 2-fold compared to the aqueous suspension. Deconvolution of the pharmacokinetic data indicated that chase dosing of nilotinib resulted in prolonged absorption compared to the aqueous suspension. Conclusion: Chase dosed LBF enhanced the in vivo bioavailability of nilotinib. Long chain lipids showed superior performance compared to medium chain lipids. Chase dosing appeared to prolong the absorption phase of the drug. Therefore, chase dosing of LBF is favourable compared to lipid suspensions for ‘brick dust’ molecules such as nilotinib.
Description
Keywords
Brick dust molecule , Chase dosing , Lipid based formulation , Lipid suspension , Poorly water-soluble drugs
Citation
Koehl, N. J., Holm, R., Kuentz, M. and Griffin, B. T. (2020) 'Chase dosing of lipid formulations to enhance oral bioavailability of nilotinib in rats', Pharmaceutical Research, 37(7), 124 (11pp). doi: 10.1007/s11095-020-02841-9
Link to publisher’s version
Collections
Copyright
© 2020, Springer Science + Business Media, LLC, part of Springer Nature. This is a post-peer-review, pre-copyedit version of an article published in Pharmaceutical Research. The final authenticated version is available online at: https://doi.org/10.1007/s11095-020-02841-9